Insectes Sociaux

, Volume 59, Issue 1, pp 67–74 | Cite as

Availability and depletion of fat reserves in halictid foundress queens with a focus on solitary nest founding

Research Article

Abstract

Foundress queens of social Hymenoptera require considerable amounts of energy for survival, solitary nest founding, provisioning of the first brood, and egg production. Energy reserves in insects mostly consist of fat. We investigated how hibernation and the subsequent flight season, especially the solitary nest founding phase, influenced the abdominal fat content of gynes in the primitively eusocial sweat bee, Lasioglossum malachurum (Hymenoptera, Halictidae). In our study population, sexuals are produced in both the second and the third broods. Emerging gynes of the third brood had significantly more fat than those of the second brood, whereas there was no such difference in males. As expected, fat reserves in samples of female sexuals caught at emergence, after hibernation, during solitary nest founding, and at the end of the social phase of the nest cycle indicate a severe decrease of reserves that was highest during the 7 weeks of the solitary founding phase. Thus, the amount of fat reserves of foundress queens seems to be crucial, particularly for nest founding. However, investment of energy reserves in the solitary nest founding phase has probably to be balanced with the subsequent social phase in a way that maximizes the queen’s fitness. Possible consequences for the complexity and progress of the nest cycle are discussed.

Keywords

Hibernation Lasioglossum malachurum Cost of nest founding Lipid store 

Notes

Acknowledgments

We would like to thank Martin Kaltenpoth for helpful comments on the manuscript and Petra Eschler for collecting field data in 2003. This study was supported by the Deutsche Forschungsgemeinschaft (SFB554, TPC6).

References

  1. Alford D.V. 1969. A study of hibernation of bumblebees (Hymenoptera-Bombidae) in southern England. J. Anim. Ecol. 38: 149-170Google Scholar
  2. Beekman M., van Stratum P. and Lingeman R. 1998. Diapause survival and post-diapause performance in bumblebee queens (Bombus terrestris). Entomol. Exp. Appl. 89: 207-214Google Scholar
  3. Beenakkers A.M.T., Van der Horst D.J. and Van Marrewijk W.J.A. 1981. Role of lipids in energy metabolism. In: Energy Metabolism in Insects (Downer R.G.H., Ed). Plenum Press, New York. pp 53-100Google Scholar
  4. Beenakkers A.M.T., Van der Horst D.J. and Van Marrewijk W.J.A. 1984. Insect flight-muscle metabolism. Insect Biochem. 14: 243-260Google Scholar
  5. Beenakkers A.M.T., Van der Horst D.J. and Van Marrewijk W.J.A. 1985. Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 24: 19-67Google Scholar
  6. Box G.E.P. and Cox D.R. 1964. An analysis of transformations. J. R. Stat. Soc. B - Stat. Meth. 26: 211-252Google Scholar
  7. Chang V.C.S. 1985. Colony revival and notes on rearing and life history of the big-headed ant Pheidole megacephala. Proc. Hawaiian Entomol. Soc. 25: 53-58Google Scholar
  8. Colinet H., Hance T.and Vernon P. 2006. Water relations, fat reserves, survival, and longevity of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae). Env. Entomol. 35: 228-236Google Scholar
  9. Danforth B.N.and Eickwort G.C. 1997. The evolution of social behavior in the augochlorine sweat bees(Hymenoptera: Halictidae) based on a phylogenetic analysis of the genera. In: Social Behavior in Insects and Arachnids (Choe J.C. and Crespi B.J., Eds). Cambridge, U.K., Cambridge University Press. pp 270-292.Google Scholar
  10. Dettner K. and Peters W. 2003. Lehrbuch der Entomologie. Gustav Fischer, JenaGoogle Scholar
  11. Ellers J. 1996. Fat and eggs: an alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 46:227-235Google Scholar
  12. Gilbert L.I. 1967. Lipid metabolism and function in insects. In: Advances in Insect Physiology (Beament J.W.L., Treherne J.E. and Wigglesworth V.B., Eds). Academic Press, London, New York. pp 69-211Google Scholar
  13. Harris R.J. and Beggs J.R. 1995. Variation in the quality of Vespula vulgaris (L) queens (Hymenoptera, Vespidae) and its significance in wasp population-dynamics. New Zeal. J. Zool. 22: 131-142Google Scholar
  14. Hee J.J., Holway D.A., Suarez A.V. and Case T.J. 2000. Role of propagule size in the success of incipient colonies of the invasive Argentine ant. Cons. Biol. 14: 559-563Google Scholar
  15. Ihaka R. and Gentleman R. 1996. R: A language for data analysis and graphics. J. Comp. Graph. Stat. 5: 299-314Google Scholar
  16. Kaitala V., Smith B.H. and Getz W.M. 1990. Nesting strategies of primitively eusocial bees - a model of nest usurpation during the solitary state of the nesting cycle. J. Theor. Biol. 144: 445-471Google Scholar
  17. Kemp W..P, Bosch J. and Dennis B. 2004. Oxygen consumption during the life cycles of the prepupa-wintering bee Megachile rotundata and the adult-wintering bee Osmia lignaria (Hymenoptera : Megachilidae). Ann. Entomol. Soc. Am. 97: 161-170Google Scholar
  18. Knerer G. 1973. Periodicity and strategy of the parasites of a social bee Evylaeus malachurus (Apoidea: Halictidae). Zool. Anz. 190: 41-63Google Scholar
  19. Knerer G. 1980. Evolution of halictine castes. Naturwissenschaften 67: 133-135Google Scholar
  20. Knerer G. 1992. The biology and social behaviour of Evylaeus malachurus (K.) (Hymenoptera; Halictidae) in different climatic regions of Europe. Zool. Jb. Syst. Oekol. Geogr. T. 119: 261-290Google Scholar
  21. Krausse-Opatz B., Kohler U. and Schopf R. 1995. The energetic state of Ips typographus L. (Col, Scolytidae) during the life-cycle. J. Appl. Entomol. 119: 185-194Google Scholar
  22. Kukuk P.F. 1992. Social interactions and familiarity in a communal halictine bee Lasioglossum (Chilalictus) hemichalceum. Ethology 91: 291-300Google Scholar
  23. Kukuk P.F. and Crozier R.H. 1990. Trophallaxis in a communal halictine bee Lasioglossum (Chilalictus) erythrurum. Proc. Natl. Acad. Sci. USA 87: 5402-5404Google Scholar
  24. Lease H.M. and Wolf B.O. 2011. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 36: 29-38Google Scholar
  25. Leather S.R., Walters K.F. and Bale J.S. 1995. The Ecology of Insect Overwintering. Cambridge University Press, CambridgeGoogle Scholar
  26. Leathwick D.M. 1997. Growth and development of queen colonies of Vespula germanica and V. vulgaris. New Zeal. J. Zool. 24: 17-23Google Scholar
  27. Legewie H. 1925a. Zum Problem des tierischen Parasitismus, I. Teil: Die Lebensweise der Schmarotzerbiene Sphecodes monilicornis K. (= subquadratus) (Hymenoptera: Apoidea). Z. Morph. Ökol. T. 4: 430-464Google Scholar
  28. Legewie H. 1925b. Zur Theorie der Staatenbildung, I. Teil: Die Biologie der Furchenbiene Halictus malachurus K. Z. Morph. Ökol. T. 3: 619-684Google Scholar
  29. Martinez T. and Wheeler D.E. 1994. Storage proteins in adult ants (Camponotus festinatus) - roles in colony founding by queens and in larval rearing by workers. J. Insect Physiol. 40: 723-729Google Scholar
  30. Michener C.D. 2000. The Bees of the World. Johns Hopkins Univ. Press, BaltimoreGoogle Scholar
  31. Mitesser O., Weissel N., Strohm E. and Poethke H.J. 2006. The evolution of activity breaks in the nest cycle of annual eusocial bees: a model of delayed exponential growth. BMC Evol. Biol. 6: 45Google Scholar
  32. Mitesser O., Weissel N., Strohm E. and Poethke H.J. 2007. Optimal investment allocation in primitively eusocial bees: a balance model based on resource limitation of the queen. Insect. Soc. 54: 234-241Google Scholar
  33. Mueller C.B. and Schmid-Hempel P. 1992. Correlates of reproductive success among field colonies of Bombus lucorum - the importance of growth and parasites. Ecol. Entomol. 17: 343-353Google Scholar
  34. Noll J. 1931. Untersuchungen über die Zeugung und Staatenbildung des Halictus malachurus Kirby. Z. Morph. Ökol. T. 23: 285-368Google Scholar
  35. Owen R.E. 1988. Body size variation and optimal body size of bumble bee queens (Hymenoptera, Apidae). Can. Entomol. 120: 19-27Google Scholar
  36. Packer L. 1990. Solitary and eusocial nests in a population of Augochlorella striata (Provancher) (Hymenoptera; Halictidae) at the northern edge of its range. Behav. Ecol. Sociobiol. 27: 339-344Google Scholar
  37. Paxton R.J., Ayasse M., Field J. and Soro A. 2002. Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites. Mol. Ecol. 11: 2405-2416Google Scholar
  38. Peters R.H. 1983. The Ecological Implications of Body Size. Cambridge University Press, CambridgeGoogle Scholar
  39. Richards M.H. 2000. Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae). Can. J. Zool. 78: 1259-1266Google Scholar
  40. Richards M.H. and Packer L. 1994. Trophic aspects of caste determination in Halictus ligatus, a primitively eusocial sweat bee. Behav. Ecol. Sociobiol. 34: 385-391Google Scholar
  41. Roeseler P.-F. and Van Honk C.G.J. 1990. Castes and reproduction in bumblebees. In: Social Insects: an Evolutionary Approach to Castes and Reproduction (Engels W., Ed). Springer, Berlin, Heidelberg, New York. pp 147-166Google Scholar
  42. Schmidt-Nielsen K. 1997. Animal Physiology: Adaptation and Environment, 5th ed. Cambridge University Press, CambridgeGoogle Scholar
  43. Sick M., Ayasse M., Tengo J., Engels W., Lubke G. and Francke W. 1994. Host-parasite relationships in 6 species of Sphecodes bees and their halictid hosts - nest intrusion, intranidal behavior, and Dufour’s gland volatiles (Hymenoptera, Halictidae). J. Insect Behav. 7: 101-117Google Scholar
  44. Smith B.H. and Weller C. 1989. Social competition among gynes in halictine bees - the influence of bee size and pheromones on behavior. J. Insect Behav. 2: 397-411Google Scholar
  45. Sokal R.R. and Rohlf F.J. 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. Freeman, New YorkGoogle Scholar
  46. Stein K.J. and Fell R.D. 1992. Seasonal comparison of weight, energy reserve, and nitrogen changes in queens of the baldfaced hornet (Hymenoptera, Vespidae). Env. Entomol. 21: 148-155Google Scholar
  47. Strohm E. 2000. Factors affecting body size and fat content in a digger wasp. Oecologia 123: 184-191Google Scholar
  48. Strohm E. and Bordon-Hauser A. 2003. Advantages and disadvantages of large colony size in a halictid bee: the queen’s perspective. Behav. Ecol. 14: 546-553Google Scholar
  49. Tamhane A.C. 1977. Multiple comparisons in Model-I One-way Anova with unequal variances. Comm. Stat. A - Theor Meth. 6: 15-32Google Scholar
  50. Toom P.M., Cupp E., Johnson C.P. and Griffin I. 1976. Utilization of body reserves for minim brood development by queens of imported fire ant, Solenopsis invicta. J. Insect Physiol. 22: 217-220Google Scholar
  51. Weissel N., Mitesser O., Liebig J., Poethke H.-J. and Strohm E. 2007. The influence of soil temperature on the nesting cycle of the halictid bee Lasioglossum malachurum. Insect. Soc. 53: 390-398Google Scholar
  52. Welch B.L. 1951. On the comparison of several mean values - an alternative approach. Biometrika 38: 330-336Google Scholar
  53. Wheeler D.E. and Buck N.A. 1996. Depletion of reserves in ant queens during claustral colony founding. Insect. Soc. 43: 297-302Google Scholar
  54. Wilson E.O. 1971. The Insect Societies. Belknap Press, CambridgeGoogle Scholar
  55. Wyman L.M. and Richards M.H. 2003. Colony social organization of Lasioglossum malachurum Kirby (Hymenoptera, Halictidae) in southern Greece. Insect. Soc. 50: 201-211Google Scholar
  56. Yanega D. 1990. Philopatry and nest founding in a primitively social bee, Halictus rubicundus. Behav. Ecol. Sociobiol. 27: 37-42Google Scholar
  57. Zobel M.U. and Paxton R.J. 2007. Is big the best? Queen size, usurpation and nest closure in a primitively eusocial sweat bee (Lasioglossum malachurum). Behav. Ecol. Sociobiol. 61: 435-447Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2011

Authors and Affiliations

  • N. Weissel
    • 1
  • O. Mitesser
    • 2
  • H.-J. Poethke
    • 2
  • E. Strohm
    • 3
  1. 1.Theodor-Boveri-Institute for BiosciencesUniversity of WuerzburgWuerzburgGermany
  2. 2.Ecological Field StationUniversity of WuerzburgRauhenebrachGermany
  3. 3.Institute of ZoologyUniversity of RegensburgRegensburgGermany

Personalised recommendations