Insectes Sociaux

, Volume 59, Issue 1, pp 17–24 | Cite as

The complete mitogenome of the Formosan termite, Coptotermes formosanus Shiraki

  • G. TokudaEmail author
  • H. Isagawa
  • K. Sugio
Research Article


The Formosan termite Coptotermes formosanus Shiraki is a well-known invasive pest that causes severe damage to wooden structures in many parts of the world. Although several studies examined its phylogeographic patterns using a few mitochondrial genes, the phylogenetic relationships among C. formosanus are poorly understood because of the small number of mutations known among its mitochondrial genes. To provide a useful genetic tool for further analyses, we analyzed the complete mitochondrial genome sequence of C. formosanus using specimens collected from three isolated islands in the Ryukyu Archipelago of Japan. The circular mitogenome of these termites consisted of genes encoding 22 transfer RNAs, two ribosomal RNAs, and 13 mitochondrial proteins, as is the case for most animal mitochondrial genomes. The G + C content was 34.1%, and the total length varied slightly between 16,234 and 16,236 base pairs. The complete mitochondrial genomes of the three populations were more than 99.9% identical to each other and showed differences at six nucleotide positions. The COII, 12S rRNA, and 16S rRNA genes that are commonly used for phylogenetic analyses revealed only one substitution or no substitutions. The mitogenome sequences determined here should contribute to the design of new molecular markers for the clarification of the historical distribution process of C. formosanus and for further phylogenetic analyses with this and related termite species.


Formosan termites Phylogeographic analyses Mitogenome Ryukyu Archipelago 



We thank Drs. H. Maekawa, M. Hojo, Y. Kawanishi, and A. Yamada for field sampling and critical comments on the present study. This work was supported by a Grant-in-Aid from Uruma Scientific Research Foundation.

Supplementary material

40_2011_182_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1505 kb)
40_2011_182_MOESM2_ESM.docx (38 kb)
Supplementary material 2 (DOCX 38 kb)


  1. Austin J.W., Szalanski A.L. and Cabrera B.J. 2004. A phylogenetic analysis of the subterranean termite family Rhinotermitidae (Isoptera). Ann. Entomol. Soc. Am. 97: 584-555.Google Scholar
  2. Austin J.W., Szalanski A.L., Scheffrahn R.H., Messenger M.T., McKern J.A. and Gold R.E. 2006. Genetic evidence for two introductions of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae), to the United States. Florida Entomol. 89: 183-193.Google Scholar
  3. Bae J.S., Kim I., Sohn H.D. and Jin B.R. 2004. The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol. Phylogenet. Evol. 32: 978-985.Google Scholar
  4. Boore J.L. and Brown W.M. 1998. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr. Opin. Genet. Develop. 8: 668-674.Google Scholar
  5. Bybee S.M., Taylor S.D., Nelson C.R. and Whiting M.F. 2004. A phylogeny of robber flies (Diptera: Asilidae) at the subfamilial level: molecular evidence. Mol. Phylogenet. Evol. 30: 789-797.Google Scholar
  6. Cameron S.L. and Whiting M.F. 2007. Mitochondrial genomic comparisons of the subterranean termites from the genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome 50: 188-202.Google Scholar
  7. Castro L.R. and Dowton M. 2007. Mitochondrial genomes in the Hymenoptera and their utility as phylogenetic marker. Syst. Entomol. 32: 60-69.Google Scholar
  8. Cha S.Y., Yoon H.J., Lee E.M., Yoon M.H., Hwang J.S., Jin B.R., Han Y.S. and Kim I. 2007. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). Gene 392: 206-220.Google Scholar
  9. Fang R., Huang L. and Zhong J.-H. 2008 Surprising low levels of genetic diversity of Formosan subterranean termites in south China as revealed by the COII gene (Isoptera: Rhinotermitidae). Sociobiology 51: 1-20.Google Scholar
  10. Feng X., Liu D.-F., Wang N.-X., Zhu C.-D. and Jiang G.-F. 2010. The mitochondrial genome of the butterfly Papilio xuthus (Lepidoptera: Papilionidae) and related phylogenetic analyses. Mol. Biol. Rep. 37: 3877-3888.Google Scholar
  11. Hong G., Jiang S., Yu M., Yang Y., Li F., Xue F. and Wei Z. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). Acta Biochim. Biophys. Sinica 41: 446-455.Google Scholar
  12. Hong M.Y., Lee E.M,. Jo Y.H., Park H.C., Kim S.R., Hwang J.S., Jin B.R., Kang P.D., Kim K.-G., Han Y.S. and Kim I. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene 413: 49-57.Google Scholar
  13. Hu J., Zhang D., Hao J., Huang D., Cameron S. and Zhu C. 2010a. The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event. Mol. Biol. Rep. 37: 3431-3438.Google Scholar
  14. Hu X.-l., Cao G.-l., Xue R.-Y., Zheng X.-J., Zhang X., Duan H.-R. and Gong C.-L. 2010b. The complete mitogenome and phylogenetic analysis of Bombyx mandarina strain Qingzhou. Mol. Biol. Rep. 37: 2599-2608.Google Scholar
  15. Kambhampati S. and Eggleton P. 2000. Taxonomy and phylogeny of termites. In: Termites: Evolution, Sociality, Symbioses, Ecology (Abe T., Bignell D.E. and Higashi M., Eds). Kluwer Academic Publishers, Dordrecht, pp 1-23.Google Scholar
  16. Kistner D.H. 1985. A new genus and species of termitophilous Aleocharinae from mainland China associated with Coptotermes formosanus and its zoogeographic significance (Coleoptera: Staphylinidae). Sociobiology 10: 93-104.Google Scholar
  17. Komoto N., Yukuhiro K., Ueda K. and Tomita S. 2011. Exploring the molecular phylogeny of phasmids with whole mitochondrial genome sequences. Mol. Phylogenet. Evol. 58: 43-62.Google Scholar
  18. Kuhn K., Streit B. and Schwenk K. 2008. Conservation of structural elements in the mitochondrial region of Daphnia. Gene 420: 107-112.Google Scholar
  19. Laslett D. and Canbäck B. 2008. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24: 172-175.Google Scholar
  20. Li H.-F., Ye W., Su N.-Y. and Kanzaki N. 2009. Phylogeography of Coptotermes gestroi and Coptotermes formosanus (Isoptera: Rhinotermitidae) in Taiwan. Ann. Entomol. Soc. Am. 102: 684-693.Google Scholar
  21. Liu H. and Beckenbach A.T. 1992. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol. Phylogenet. Evol. 1: 41-52.Google Scholar
  22. Maruyama M. and Iwata R. 2002. Two new termitophiles of the tribe Termitohospitini (Coleoptera: Staphylinidae: Aleocharinae) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae). Can. Entomol. 134: 419-432.Google Scholar
  23. Ohkuma M., Yuzawa H., Amornsak W., Sornnuwat Y., Takematsu Y., Yamada A., Vongkaluang C., Sarnthoy O., Kirtibutr N., Noparatnaraporn N., Kudo T. and Inoue T. 2004. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol. Phylogenet. Evol. 31: 701-710.Google Scholar
  24. Ota H. 1998. Geographic patterns of endemism and speciation in amphibians and reptiles of the Ryukyu Archipelago, Japan, with special reference to their paleogeographical Implications. Res. Popul. Ecol. 40: 189-204.Google Scholar
  25. Pons J., Ribera I., Bertranpetit J. and Balke M. 2010. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol. Phylogenet. Evol. 56: 796-807.Google Scholar
  26. Schattner P., Brooks A.N. and Lowe T.M. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33: W686-W689.Google Scholar
  27. Sheffield N.C., Song H., Cameron S.L. and Whiting M.F. 2008. A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol. Biol. Evol. 25: 2499-2509.Google Scholar
  28. Skerratt L.F., Campbell N.J.H., Murrell A., Walton S., Kemp D. and Barker S.C. 2002. The mitochondroal 12S gene is a suitable marker of populations of Sarcoptes scabiei from wombats, dogs and humans in Australia. Parasitol. Res. 88: 376-379.Google Scholar
  29. Su N.-Y. 2003. Overview of the global distribution and control of the Formosan subterranean termite. Sociobiology 41: 7-16.Google Scholar
  30. Su N.-Y., Scheffrahn R.H. 2000. Termites as pests of buildings. In: Termites: Evolution, Sociality, Symbioses, Ecology (Abe T., Bignell D.E. and Higashi M., Eds). Kluwer Academic Publishers, Dordrecht, pp 437-454.Google Scholar
  31. Tokuda G., Lo N. and Watanabe H. 2005. Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol. Entomol. 30: 372-380.Google Scholar
  32. Tokuda G., Lo N., Watanabe H., Arakawa G., Matsumoto T. and Noda H. 2004. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol. Ecol. 13: 3219-3228.Google Scholar
  33. Vargo E.L., Husseneder C., Woodson D., Waldvogel M.G. and Grace J.K. 2006. Genetic analysis of colony and population structure of three introduced populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the continental United States. Environ. Entomol. 35: 151-166.Google Scholar
  34. Vila M. and Björklund M. 2004. The utility of the neglected mitochondrial control region for evolutionary studies in Lepidoptera (Insecta). J. Mol. Evol. 58: 280-290.Google Scholar
  35. Wei S.-J., Shi M., Chen X.-X., Sharkey M.J., Achterberg C.V., Ye G.-Y. and He J.-H. 2010. New views on strand asymmetry in insect mitochondrial genomes. PLoS One 5: e12708.Google Scholar
  36. Wolstenholme D.R 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216.Google Scholar
  37. Yamada A., Saitoh S., Tokuda G., Fujii S., Endo N., Ueshima E., Tawa Y., Miyagi M., Makiya H., Shinzato N., Lee C.-Y. and Tsunoda K. 2010. Genetic diversity of the Formosan subterranean termite, Coptotermes formosanus Shiraki in relation to the distribution of staphylinid termitophiles. Proc. 7th Conf. Pacific Rim Termite Res. Group: 89-94.Google Scholar
  38. Yamauchi M.M., Miya M.U. and Nishida M. 2004. Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Mol. Biol. 13: 435-442.Google Scholar
  39. Yeap B.-K., Othman A.S. and Lee C.-Y. 2009. Molecular systematics of Coptotermes (Isoptera: Rhinotermitidae) from east Asia and Australia. Ann. Entomol. Soc. Am. 102: 1077-1090.Google Scholar
  40. Yeap B.-K., Othman A.S., Lee V.S. and Lee C.-Y. 2007. Genetic relationship between Coptotermes gestroi and Coptotermes vastator (Isoptera: Rhinotermitidae). J. Econ. Entomol. 100: 467-474.Google Scholar
  41. Zhou Z., Ye H., Huang Y. and Shi F. 2010. The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae: Phaneropterinae) mitogenome. J. Genet. Genomics 37: 315-324.Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2011

Authors and Affiliations

  1. 1.Tropical Biosphere Research Center, COMBUniversity of the RyukyusNishiharaJapan
  2. 2.Department of EducationUniversity of the RyukyusNishiharaJapan

Personalised recommendations