Insectes Sociaux

, Volume 58, Issue 4, pp 569–574 | Cite as

Experimentally induced variation in the physical reproductive potential and mating success in honey bee queens

  • D. R. Tarpy
  • J. J. Keller
  • J. R. Caren
  • D. A. Delaney
Research Article

Abstract

In honeybee colonies, reproduction is monopolized by the queen while her daughter workers are facultatively sterile. Caste determination is a consequence of environmental conditions during development, during which female larvae may become either queens or workers depending on their larval diet. This bipotency introduces significant variation in the reproductive potential of queen bees, with queens raised from young worker larvae exhibiting high reproductive potential and queens raised from older worker larvae exhibiting lower reproductive potential. We verify that low-quality queens are indeed produced from older worker larvae, as measured morphometrically (e.g., body size) and by stored sperm counts. We also show, for the first time, that low-quality queens mate with significantly fewer males, which significantly influences the resultant intracolony genetic diversity of the worker force of their future colonies. These results demonstrate a reproductive continuum of honeybee queens and provide insights into the reproductive constraints of social insects.

Keywords

Honey bees Queen reproductive quality Mating behavior 

Notes

Acknowledgments

We thank Jessica Richards, Matt Mayer, and Holly Wantuch for their help in collecting data in the field, as well as John Harman for his help in DNA extractions and PCR analyses. A special thanks goes to Laura Mathies for use of her fluorescent microscope for the sperm analyses, as well as Laurent Keller and Jim Hunt for helpful comments on the manuscript. Consuelo Arellano provided helpful statistical advice that improved the manuscript. This study was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2007-02281.

References

  1. Barchuk A.R., Cristino A.S., Kucharski R., Costa L.F., Simoes Z.L.P. and Maleszka R. 2007. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Devel. Biol. 7: 70Google Scholar
  2. Boomsma J.J. and Ratnieks F.L.W. 1996. Paternity in eusocial Hymenoptera. Phil. Trans. R. Soc. B 351: 947-975Google Scholar
  3. Cobey S. 2003. The extraordinary honey bee mating strategy and a simple field dissection of the spermatheca—A three-part series—Part 3—The spermatheca. Am. Bee J. 143: 217-220Google Scholar
  4. Collins A.M. and Donoghue A.M. 1999. Viability assessment of honey bee, Apis mellifera sperm using dual fluorescent staining. Theriogenology 51: 1513-1523Google Scholar
  5. Crozier R.H. and Pamilo P. 1996. Evolution of Social Insect Colonies: Sex Allocation and Kin Selection. Oxford University Press, New York. 306 ppGoogle Scholar
  6. de Azevedo S.V. and Hartfelder K. 2008. The insulin signaling pathway in honey bee (Apis mellifera) caste development - differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J. Insect Physiol. 54: 1064-1071Google Scholar
  7. Dedej S., Hartfelder K., Aumeier P., Rosenkranz P. and Engels W. 1998. Caste determination is a sequential process: effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica). J. Apicult. Res. 37: 183-190Google Scholar
  8. Delaney D.A., Keller J.J., Caren J.R. and Tarpy D.R. 2011. The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera). Apidologie 42: 1-13Google Scholar
  9. Eckert J.E. 1934. Studies in the number of ovarioles in queen honeybees in relation to body size. J. Econ. Entomol. 27: 629-635Google Scholar
  10. Fjerdingstad E.J. and Keller L. 2004. Relationships between phenotype, mating behavior, and fitness of queens in the ant Lasius niger. Evolution 58: 1056-1063Google Scholar
  11. Franck P., Coussy H., Le C.Y., Solignac M., Garnery L. and Cornuet J.M. 1999. Microsatellite analysis of sperm admixture in honeybee. Insect Mol. Biol. 8: 419-421Google Scholar
  12. Franck P., Solignac M., Vautrin D., Cornuet J.M., Koeniger G. and Koeniger N. 2002. Sperm competition and last-male precedence in the honeybee. Anim. Behav. 64: 503-509Google Scholar
  13. Gary N.E. 1963. Observations of mating behaviour in the honeybee. J. Apicult. Res. 2: 3-13Google Scholar
  14. Gilley D.C., Tarpy D.R. and Land B.B. 2003. The effect of queen quality on the interactions of workers and dueling queen honey bees (Apis mellifera L.). Behav. Ecol. Sociobiol. 55: 190-196Google Scholar
  15. Haberl M. and Tautz D.1998. Sperm usage in honey bees. Behav. Ecol. Sociobiol. 423: 247-255Google Scholar
  16. Hatch S., Tarpy D.R. and Fletcher D.J.C. 1999. Worker regulation of emergency queen rearing in honey bee colonies and the resultant variation in queen quality. Insect. Soc. 46: 372-377Google Scholar
  17. Hayworth M.K., Johnson N.G., Wilhelm M.E., Gove R.P., Metheny J.D. and Rueppell O. 2009. Added weights lead to reduced flight behavior and mating success in polyandrous honey bee queens (Apis mellifera). Ethology 115: 698-706Google Scholar
  18. Kocher S.D., Richard F.J., Tarpy D.R. and Grozinger C.M. 2008. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 9: 232Google Scholar
  19. Koeniger G. 1988. Mating behavior of honey bees. In: Africanized Honey Bees and Bee Mites (Brown C.E., Ed), Wiley and Sons, New York. pp 167-172Google Scholar
  20. Laidlaw H.H. Jr. and Page R.E. Jr. 1984. Polyandry in honey bees (Apis mellifera L.): sperm utilization and intracolony genetic relationships. Genetics 108: 985-997Google Scholar
  21. Laidlaw H.H. Jr. and Page R.E. Jr. (1997). Queen Rearing and Bee Breeding. Wicwas, Cheshire, CT. 224 ppGoogle Scholar
  22. Mattila H.R. and Seeley T.D. 2007. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317: 362-364Google Scholar
  23. Nelson D.L. and Gary N.E. 1983. Honey productivity of honey bee Apis mellifera colonies in relation to body weight attractiveness and fecundity of the queen. J. Apicult. Res. 22: 209-213Google Scholar
  24. Nielsen R., Tarpy D.R. and Reeve H.K. 2003. Estimating effective paternity number in social insects and the effective number of alleles in a population. Molec. Ecol. 12: 3157-3164Google Scholar
  25. Oldroyd B.P. and Fewell J.H. 2007. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22: 408-413Google Scholar
  26. Page R.E. Jr. 1980 The evolution of multiple mating behavior by honey bee queens (Apis mellifera). Genetics 96: 263-273Google Scholar
  27. Page R.E. Jr., Kimsey R.B. and Laidlaw H.H. Jr. 1984. Migration and dispersal of spermatozoa in spermathecae of queen honeybees (Apis mellifera L.). Experientia 40: 182-184Google Scholar
  28. Page R.E. Jr., Robinson G.E., Fondrk M.K. and Nasr M.E. 1995. Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera L.). Behav. Ecol. Sociobiol. 36: 387-396Google Scholar
  29. Ratnieks F.L.W. 1990. The evolution of polyandry by queens in social Hymenoptera: the significance of the timing of removal of diploid males. Behav. Ecol. Sociobiol. 26: 343-348Google Scholar
  30. Rueppell O., Johnson N. and Rychtar J. 2008. Variance-based selection may explain general mating patterns in social insects. Biol. Lett. 4: 270-273Google Scholar
  31. Ruttner F. 1956. The mating of the honeybee. Bee World 37: 3-15Google Scholar
  32. Sasaki K., Satoh T. and Obara Y. 1995. Sperm utilization by honey bee queens; DNA fingerprinting analysis. Appl. Entomol. Zool. 30: 335-341Google Scholar
  33. Schluns H., Moritz R.F.A., Neumann P., Kryger P. and Koeniger G. 2005. Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Anim. Behav. 70: 125-131Google Scholar
  34. Seeley T.D. and Tarpy D.R. 2007. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B 274: 67-72Google Scholar
  35. Tanaka E.D. and Hartfelder K. 2004. The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes. Arthropod Struct. Dev. 33: 431-442Google Scholar
  36. Tarapore D., Floreano D. and Keller L. 2010. Task-dependent influence of genetic architecture and mating frequency on division of labour in social insect societies. Behav. Ecol. Sociobiol. 64: 675-684Google Scholar
  37. Tarpy D.R. 2003. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R. Soc. Lond. B 270: 99-103Google Scholar
  38. Tarpy D.R., Caren J.R., Delaney D.A., Sammataro D., Finley J., Loper G.M. and DeGrandi-Hoffman G. 2010. Mating frequencies of Africanized honey bees in the south western USA. J. Apicult. Res. 49: 302-310Google Scholar
  39. Tarpy D.R. and Mayer M.K. 2009. The effects of size and reproductive quality on the outcomes of duels between honey bee queens (Apis mellifera L.). Ethol. Ecol. Evol. 21: 147-153Google Scholar
  40. Tarpy D.R. and Nielsen D.I. 2002. Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies (Hymenoptera : Apidae). Ann. Entomol. Soc. Am. 95: 513-528Google Scholar
  41. Tarpy D.R., Nielsen R. and Nielsen D.I. 2004. A scientific note on the revised estimates of effective paternity frequency in Apis. Insect. Soc. 51: 203-204Google Scholar
  42. Tarpy D.R. and Page R.E. Jr. 2000. No behavioral control over mating frequency in queen honey bees (Apis mellifera L.): Implications for the evolution of extreme polyandry. Am. Nat. 155: 820-827Google Scholar
  43. Tarpy D.R. and Page R.E. Jr. 2001. The curious promiscuity of queen honey bees (Apis mellifera): evolutionary and behavioral mechanisms. Ann. Zool. Fenn. 38: 255-265Google Scholar
  44. Toth A.L., Bilof K.B.J., Henshaw M.T., Hunt J.H. and Robinson G.E. 2009. Lipid stores, ovary development, and brain gene expression in Polistes metricus females. Insect. Soc. 56: 77-84Google Scholar
  45. Ugelvig L.V., Kronauer D.J.C., Schrempf A., Heinze J. and Cremer S. 2010. Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc. R. Soc. B 277: 2821-2828Google Scholar
  46. Waddington S.J., Santorelli L.A., Ryan F.R. and Hughes W.O.H. 2010. Genetic polyethism in leaf-cutting ants. Behav. Ecol. 21: 1165-1169Google Scholar
  47. Walker W.F. 1980. Sperm utilization strategies in nonsocial insects. Am. Nat. 115: 780-799Google Scholar
  48. Wang J.L. 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166: 1963–1979.Google Scholar
  49. Wilson E.O. 1971. The Insect Societies. Harvard University Press, Cambridge. 548 ppGoogle Scholar
  50. Winston M.L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge. 281 ppGoogle Scholar
  51. Withers G.S., Fahrbach S.E. and Robinson G.E. 1995. Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. J. Neurobiol. 26: 130-144Google Scholar
  52. Woyke J. 1964. Causes of repeated mating flights by queen honeybees. J. Apicult. Res. 3: 17-23Google Scholar
  53. Woyke J. 1971. Correlations between the age at which honeybee brood was grafted, characteristics of the resultant queens, and results of insemination. J. Apicult. Res. 10: 45-55Google Scholar
  54. Woyke J. 1989. Results of instrumental insemination. In: The Instrumental Insemination of the Queen Bee (Moritz R.F.A., Ed), Apimondia, Bucharest. pp 93-103Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2011

Authors and Affiliations

  • D. R. Tarpy
    • 1
    • 2
  • J. J. Keller
    • 1
  • J. R. Caren
    • 1
  • D. A. Delaney
    • 3
  1. 1.Department of EntomologyNorth Carolina State UniversityRaleighUSA
  2. 2.Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Entomology and Wildlife BiologyUniversity of DelawareNewarkUSA

Personalised recommendations