Insectes Sociaux

, 58:479 | Cite as

Brood adoption in the leaf-cutting ant Acromyrmex echinatior: adaptation or recognition noise?

  • B. Fouks
  • P. d’Ettorre
  • V. NehringEmail author
Research article


The ability to discriminate between nestmates and non-nestmates is an important prerequisite for the evolution of eusociality. Indeed, social insect workers are typically able to discriminate between nestmate and non-nestmate workers. Adult non-nestmate workers are readily detected and rejected from the colony. Whether social insects can discriminate between nestmate and non-nestmate brood, however, is less clear. Here, we show that workers of the leaf-cutting ant Acromyrmex echinatior discriminate between nestmate and non-nestmate brood, and among brood of different stages. Initially, non-nestmate brood is attacked, but it is adopted after a delay. Adoption could occur due to inefficiency of the recognition system, or it could be adaptive because it is an inexpensive way to increase the workforce. Our results suggest that brood adoption may occur accidentally. We also report how workers replace fungal hyphae on the brood’s surface before transporting the brood into their fungus garden.


Acromyrmex Brood care Fungus-growing ants Nestmate recognition 



This work was supported by the Marie Curie Excellence Grant CODICES (EXT-CT-2004-014202) and partly by a ‘‘Freia grant’’ from the Faculty of Science, University of Copenhagen, both assigned to PdE. BF was supported by the ERASMUS programme, and VN by the German Academic Exchange Service (DAAD). We thank the Smithsonian Tropical Research Institute (STRI) and the Autoridad Nacional del Ambiente (ANAM) for permission to work in Panama, and the Danish Natural Science Research Council for financial support. The authors also thank Hermógenes Fernández-Marín for fruitful discussions, all the members of the Centre for Social Evolution, University of Copenhagen, for a stimulating working environment, and Alain Lenoir and one anonymous referee for their helpful comments on the manuscript.


  1. Bates D., Maechler M. and Dai B. 2008. Lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-28.
  2. Bonavita-Cougourdan A., Clément J.L. and Lange C. 1987. Nestmate recognition: The role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J. Entomol. Sci. 22: 1-10Google Scholar
  3. Bot A.N.M. and Boomsma J.J. 1996. Variable metapleural gland size-allometries in Acromyrmex leafcutter ants (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 69: 375-383Google Scholar
  4. Carlin N.F. and Hölldobler B. 1986. The kin recognition system of carpenter ants (Camponotus spp.): I. hierarchical cues in small colonies. Behav. Ecol. Sociobiol. 19: 123-134Google Scholar
  5. Carlin N.F. and Schwartz P.H. 1989. Pre-imaginal experience and nestmate brood recognition in the carpenter ant, Camponotus floridanus. Anim. Behav. 38: 89-95Google Scholar
  6. Currie C.R. 2001. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu. Rev. Microbiol. 55: 357-380Google Scholar
  7. d’Ettorre P. and Lenoir A. 2010. Nestmate recognition. In: Ant Ecology (Lach L., Parr C. and Abbott K., Eds), Oxford University Press, USA. pp 194-208Google Scholar
  8. de Souza D.J., Della Lucia T.M.C., Errard C., Richard F. and Lima E.R. 2006. Behavioural and chemical studies of discrimination processes in the leaf-cutting ant Acromyrmex laticeps nigrosetorus (Forel, 1908). Braz. J. Biol. 66: 863-871Google Scholar
  9. Febvay G., Mallet F. and Kermarrec A. 1984. Attractivité du couvain et comportement des ouvrières de la fourmi attine Acromyrmex octospinosus (Reich) (Hym. Form.). Actes Coll. Insectes Soc. 1: 79-86Google Scholar
  10. Fénéron R. and Jaisson P. 1992. Nestmate-brood recognition among workers of different social status in Ectatomma tuberculatum Olivier (Formicidae, Ponerinae). Behav. Proc. 27: 54-52Google Scholar
  11. Fénéron R. and Jaisson P. 1995. Ontogeny of nestmate brood recognition in a primitive ant, Ectatomma tubercalutum Olivier (Ponerinae). Anim. Behav. 50: 9-14Google Scholar
  12. Hare J.F. and Alloway T.M. 1987. Early learning and brood discrimination in leptothoracine ants (Hymenoptera: Formicidae). Anim. Behav. 35: 1720-1724Google Scholar
  13. Hefetz A. 2007. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) - interplay of colony odor uniformity and odor idiosyncrasy. A review. Myrmecol. News 10: 59-68Google Scholar
  14. Hughes W.O.H., Eilenberg J. and Boomsma J.J. 2002. Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc. R. Soc. B 269: 1811-1819Google Scholar
  15. Isingrini M., Lenoir A. and Jaisson P. 1985. Preimaginal learning as a basis of colony-brood recognition in the ant Cataglyphis cursor. Proc. Natl Acad. Sci. USA 82: 8545-8547Google Scholar
  16. Krag K., Lundegaard R., Offenberg J., Nielsen M.G. and Wiwatwittaya D. 2010. Intercolony transplantation of Oecophylla smaragdina (Hymenoptera: Formicidae) larvae. J. Asia Pacific Entomol. 13: 97-100Google Scholar
  17. Kronauer D.J.C., Gadau J. and Hölldobler B. 2003 Genetic evidence for intra- and interspecific slavery in honey ants (genus Myrmecocystus). Proc. R. Soc. Lond. B 270: 805-810Google Scholar
  18. Lenoir A. 1981. Brood retrieving in the ant, Lasius niger L. Sociobiology 6: 153-178Google Scholar
  19. Lenoir A. 1984. Brood-colony recognition in Cataglyphis cursor worker ants (Hymenoptera: Formicidae). Anim. Behav. 32: 942-944Google Scholar
  20. Lenoir A., Fresneau D., Errard C. and Hefetz A. 1999. Individuality and colonial identity in ants. In: Information Processing in Social Insects (Detrain C., Deneubourg J.L. and Pasteels J., Eds), Birkhäuser Verlag, Basel. pp 219-237Google Scholar
  21. Lopes J.F.S., Hughes W.O.H., Camargo R.S. and Forti L.C. 2005. Larval isolation and brood care in Acromyrmex leaf-cutting ants. Insect. Soc. 52: 333-338Google Scholar
  22. Martin S.J., Takahashi J.-I., Ono M. and Drijfhout F.P. 2008. Is the social parasite Vespa dybowskii using chemical transparency to get her eggs accepted? J. Insect Physiol. 15: 700-707Google Scholar
  23. Meudec M. 1978. Response to and transport of brood by workers of Tapinoma erraticum (Formicidae; Dolichoderinae) during nest disturbance. Behav. Proc. 3: 199-209Google Scholar
  24. Morel L. and Vander Meer R.K. 1988 Do ant brood pheromones exist? Ann. Entomol. Soc. Am. 81: 705-710Google Scholar
  25. Ottoni E.B. 2000. EthoLog 2.2: A tool for the transcription and timing of behavior observation sessions. Behav. Res. Methods Instrum. Comput. 32: 446-449Google Scholar
  26. Poulsen M. and Boomsma J.J. 2005. Mutualistic fungi control crop diversity in fungus-growing ants. Science 307: 741-744Google Scholar
  27. R Development Core Team 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 1706 ppGoogle Scholar
  28. Richard F., Poulsen M., Hefetz A., Errard C., Nash D.R. and Boomsma J.J. 2007. The origin of the chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants. Behav. Evol. Sociobiol. 61: 1637-1649Google Scholar
  29. Rissing S.W. and Pollock G.B. 1987 Queen aggression, pleometrotic advantage and brood raiding in the ant Veromessor pergandei (Hymenoptera: Formicidae). Anim. Behav. 35: 975-981Google Scholar
  30. Schönrogge K., Wardlaw J.C., Peters A.J., Everett S., Thomas J.A. and Elmes G.W. 2004. Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebelli. J. Chem. Ecol. 30: 91-107Google Scholar
  31. Soroker V., Vienne C. and Hefetz A. 1995. Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). J. Chem. Ecol. 21: 365-378Google Scholar
  32. Sumner S., Nash D.R. and Boomsma J.J. 2003 The adaptive significance of inquiline parasite workers. Proc. R. Soc. B 270: 1315-1322Google Scholar
  33. van Zweden J.S. and d’Ettorre P. 2010. The role of hydrocarbons in nestmate recognition. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Blomquist G.C. and Bagnères A.-G., Eds), Cambridge University Press, Cambridge, USA. pp 222-243Google Scholar
  34. Viana A.M.M. 1996. La reconnaissance coloniale du couvain et du champignon chez la fourmi champignonniste Acromyrmex subterraneus subterraneus. Thesis University of Paris XIII.Google Scholar
  35. Viana A.M.M., Frézard A., Malosse C., Della Lucia T.M.C., Errard C. and Lenoir A. 2001. Colonial recognition of fungus in the fungus-growing ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). Chemoecology 11: 29-36Google Scholar
  36. Weber N.A. 1966. Fungus-growing ants. Science 153: 587-604Google Scholar
  37. Wheeler G.C. 1948. The larvae of the fungus growing ants. Am. Mid. Natr. 40: 664-689Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2011

Authors and Affiliations

  1. 1.Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagen EDenmark
  2. 2.AG Molecular EcologyMartin-Luther University of Halle-WittenbergHalleGermany
  3. 3.Laboratory of Experimental and Comparative Ethology (LEEC)University of ParisVilletaneuseFrance

Personalised recommendations