Insectes Sociaux

, Volume 58, Issue 4, pp 445–452 | Cite as

Population structure of Apis cerana in Thailand reflects biogeography and current gene flow rather than Varroa mite association

  • O. RueppellEmail author
  • A. M. Hayes
  • N. Warrit
  • D. R. Smith
Research Article


Concordance between the mitochondrial haplotypes of the Eastern honey bee, Apis cerana, and its ectoparasitic Varroa mites across the Isthmus of Kra in Thailand has suggested that local host–pathogen co-evolution may be responsible for the geographic distribution of particular genotypes. To investigate nuclear microsatellites population structure in A. cerana, single workers of A. cerana colonies from Thailand were genotyped at 18 microsatellite loci. The loci showed intermediate to high levels of heterozygosity and a range of allele numbers. The analyses confirmed a fundamental subdivision of the Thai A. cerana population into the “Asia Mainland” and “Sundaland” regions at the Isthmus of Kra. However, the nuclear microsatellite differentiation was less distinct than mtDNA haplotype differences, suggesting male-biased dispersal and population admixture. Overall, samples showed a weak isolation-by-distance effect. The isolated population on Samui island was most differentiated from the other samples. The results do not support our initial hypothesis of local host–pathogen co-evolution, which predicts a strict correspondence between the nuclear genome and the lineage of parasitic Varroa mite of the A. cerana samples, because the gene flow indicated by our nuclear microsatellite markers should also mix potential Varroa resistance alleles among subpopulations. Instead, our study suggests that the coincidental distribution of Varroa lineages and A. cerana population structure in Thailand are the result of biogeographic history and current migration patterns.


Biogeography Co-evolution Local adaptation Microsatellites Population structure 



We would like to thank Stephen Brown for practical assistance in the lab. Members of the UNCG social insect lab and the North Carolina Honey Bee Research Consortium improved the study through many comments and discussions. The study was further improved by constructive criticisms by three anonymous reviewers and our editor. This study was financially supported by the National Science Foundation (#0615502) and USDA-NIFA (AFRI #2010-65-104-20533).


  1. Crozier Y.C., Koulianos S. and Crozier R.H. 1991. An improved test for Africanized honeybee mitochondrial DNA. Experientia 47: 968-969.Google Scholar
  2. Damus M.S. and Otis G.W. 1997. A morphometric analysis of Apis cerana F and Apis nigrocincta Smith populations from Southeast Asia. Apidologie 28: 309-323.Google Scholar
  3. de la Rua P., Simon U.E., Tilde A.C., Moritz R.F.A. and Fuchs S. 2000. MtDNA variation in Apis cerana populations from the Philippines. Heredity 84: 124-130.Google Scholar
  4. Delaney D.A., Meixner M.D., Schiff N.M. and Sheppard W.S. 2009. Genetic characterization of commercial honey bee (Hymenoptera: Apidae) populations in the United States by using mitochondrial and microsatellite markers. Annls Entomol. Soc. Am. 102: 666-673.Google Scholar
  5. Deowanish S., Nakamura J., Matsuka M. and Kimura K. 1996. MtDNA variation among subspecies of Apis cerana using restriction fragment length polymorphism. Apidologie 27: 407-413.Google Scholar
  6. El-Niweiri M.A.A. and Moritz R.F.A. 2010. The impact of apiculture on the genetic structure of wild honeybee populations (Apis mellifera) in Sudan. J. Insect Cons. 14: 115-124.Google Scholar
  7. Evanno G., Regnaut S. and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.Google Scholar
  8. Hamilton W.D. 1980. Sex versus non-sex versus parasite. Oikos 35: 282-290.Google Scholar
  9. Hepburn H.R., Smith D.R., Radloff S.E. and Otis G.W. 2001. Infraspecific categories of Apis cerana: morphometric, allozymal and mtDNA diversity. Apidologie 32: 3-23.Google Scholar
  10. Hubisz M.J., Falush D., Stephens M. and Pritchard J.K. 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Res. 9: 1322-1332.Google Scholar
  11. Insuan S., Deowanish S., Klinbunga S., Sittipraneed S., Sylvester H.A. and Wongsiri S. 2007. Genetic differentiation of the giant honey bee (Apis dorsata) in Thailand analyzed by mitochondrial genes and microsatellites. Biochem. Gen. 45: 345-361.Google Scholar
  12. Lively C.M. and Dybdahl M.F. 2000. Parasite adaptation to locally common host genotypes. Nature 405: 679-681.Google Scholar
  13. Meznar E.R., Gadau J., Koeniger N. and Rueppell O. 2010. Comparative linkage mapping suggests a high recombination rate in all honey bees. J. Hered. 101: S118-S126.Google Scholar
  14. Nakamura J., Wongsiri S. and Sasaki M. 1991. Apis cerana on Samui island and its beekeeping. Honeybee Sci. 12: 27-30.Google Scholar
  15. Oldroyd B.P. and Wongsiri S. 2006. Asian Honey Bees: Biology, Conservation and Human Interactions. Harvard University Press, Cambridge. 360 pp.Google Scholar
  16. Ozdil F., Yildiz M.A. and Hall H.G. 2009. Molecular characterization of Turkish honey bee populations (Apis mellifera) inferred from mitochondrial DNA RFLP and sequence results. Apidologie 40: 570-576.Google Scholar
  17. Palmer K.A. and Oldroyd B.P. 2000. Evolution of multiple mating in the genus Apis. Apidologie 31: 235-248.Google Scholar
  18. Pamilo P., Gertsch P., Thoren P. and Seppa P. 1997. Molecular population genetics of social insects. Annu. Rev. Ecol. Syst. 28: 1-25.Google Scholar
  19. Pritchard J.K., Stephens M. and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.Google Scholar
  20. Raffiudin R. and Crozier R.H. 2007. Phylogenetic analysis of honey bee behavioral evolution. Mol. Phyl. Evol. 43: 543-552.Google Scholar
  21. Rosenkranz P., Aumeier P. and Ziegelmann B. 2010. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103: S96-S119.Google Scholar
  22. Ross K.G., Krieger M.J., Shoemaker D.D., Vargo E.L. and Keller L. 1997. Hierarchical analysis of genetic structure in native fire ant populations: results from three classes of molecular markers. Genetics 147: 643-55.Google Scholar
  23. Rousset F. 2008. GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Res. 8: 103-106.Google Scholar
  24. Ruttner F. 1988. Biogeography and Taxonomy of Honeybees. Springer, Berlin. 284 pp.Google Scholar
  25. Sammataro D., Gerson U. and Needham G. 2000. Parasitic mites of honey bees: Life history, implications, and impact. Annu. Rev. Entomol. 45: 519-548.Google Scholar
  26. Schmid-Hempel P. 1998. Parasites in Social Insects. Princeton University Press, Princeton, NJ. 392 pp.Google Scholar
  27. Schug M.D., Regulski E.E., Pearce A. and Smith S.G. 2004. Isolation and characterization of dinucleotide repeat microsatellites in Drosophila ananassae. Gen. Res. 83: 19-29.Google Scholar
  28. Sihanuntavong D., Sittipraneed S. and Klinbunga S. 1999. Mitochondrial DNA diversity and population structure of the honey bee, Apis cerana, in Thailand. J. Apicult. Res. 38: 211-219.Google Scholar
  29. Sittipraneed S., Laoaroon S., Klinbunga S. and Wongsiri S. 2001a. Genetic differentiation of the honey bee (Apis cerana) in Thailand: evidence from microsatellite polymorphism. J. Apicult. Res. 40: 9-16.Google Scholar
  30. Sittipraneed S., Sihanuntavong D. and Klinbunga S. 2001b. Genetic differentiation of the honey bee (Apis cerana) in Thailand revealed by polymorphism of a large subunit of mitochondrial ribosomal DNA. Insect. Soc. 48: 266-272.Google Scholar
  31. Smith D.R. and Hagen R.H. 1996. The biogeography of Apis cerana as revealed by mitochondrial DNA sequence data. J. Kansas Entomol. Soc. 69: 294-310.Google Scholar
  32. Smith D.R. and Hagen R.H. 1999. Phylogeny and Biogeography of Apis cerana subspecies: testing alternative hypotheses. In: Apiculture for the 21st Century (Hoopingarner R. and Connor L., Eds), Wicwas Press, Cheshire, pp 60-68.Google Scholar
  33. Smith D.R., Villafuerte L., Otis G. and Palmer M.R. 2000. Biogeography of Apis cerana F. and A. nigrocincta Smith: insights from mtDNA studies. Apidologie 31: 265-279.Google Scholar
  34. Solignac M., Mougel F., Vautrin D., Monnerot M. and Cornuet J.M. 2007. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol. 8: R66.Google Scholar
  35. Songram O., Sittipraneed S. and Klinbunga S. 2006. Mitochondrial DNA diversity and genetic differentiation of the honeybee (Apis cerana) in Thailand. Biochem. Gen. 44: 256-269.Google Scholar
  36. Sylvester H.A., Limbipichai K., Wongsiri S., Rinderer T.E. and Mardan M. 1998. Morphometric studies of Apis cerana in Thailand and the Malaysian peninsula. J. Apicult. Res. 37: 137-145.Google Scholar
  37. Takahashi J.I., Shimizu S., Koyama S., Kimura K., Shimizu I. and Yoshida T. 2009. Variable microsatellite loci isolated from the Asian honeybee, Apis cerana (Hymenoptera; Apidae). Mol. Ecol. Res. 9: 819-821.Google Scholar
  38. Warrit N., Smith D.R. and Lekprayoon C. 2006. Genetic subpopulations of Varroa mites and their Apis cerana hosts in Thailand. Apidologie 37: 19-30.Google Scholar
  39. Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D. and Tsutsui N.D. 2006. Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science 314: 642-645.Google Scholar
  40. Woodruff D.S. 2003. Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai-Malay Peninsula. J. Biogeogr. 30: 551-567.Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2011

Authors and Affiliations

  • O. Rueppell
    • 1
    Email author
  • A. M. Hayes
    • 1
  • N. Warrit
    • 2
  • D. R. Smith
    • 3
  1. 1.Department of BiologyUniversity of North Carolina at GreensboroGreensboroUSA
  2. 2.Department of Biology, Faculty of SciencesChulalongkorn UniversityBangkokThailand
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA

Personalised recommendations