Insectes Sociaux

, Volume 58, Issue 1, pp 57–64 | Cite as

Genetic diversity of termite-egg mimicking fungi “termite balls” within the nests of termites

Research Article

Abstract

Antagonistic or mutualistic interactions between insects and fungi are well-known, and the mutualistic interactions of fungus-growing ants, fungus-growing termites, and fungus-gardening beetles with their respective fungal mutualists are model examples of coevolution. However, our understanding of coevolutionary interactions between insects and fungi has been based on a few model systems. Fungal mimicry of termite eggs is one of the most striking evolutionary consequences of insect–fungus associations. This novel termite–fungus interaction is a good model system to compare with the relatively well-studied systems of fungus-growing ants and termites because termite egg-mimicking fungi are protected in the nests of social insects, as are fungi cultivated by fungus-growing ants and termites. Recently, among systems of fungus-growing ants and termites, much attention has been focused on common factors including monoculture system for the ultimate evolutionary stability of mutualism. We examined the genetic diversity of termite egg-mimicking fungi within host termite nests. RFLP analysis demonstrated that termite nests were often infected by multiple strains of termite egg-mimicking fungi, in contrast to single-strain monocultures in fungus combs of fungus-growing ants and termites. Additionally, phylogenetic analyses indicated the existence of a free-living stage of the termite egg-mimicking fungus as well as frequent long-distance gene flow by spores and subsequent horizontal transmission. Comparisons of these results with previous studies of fungus-growing ants and termites suggest that the level of genetic diversity of fungal symbionts within social insect nests may be important in shaping the outcome of the coevolutionary interaction, despite the fact that the mechanism for achieving genetic diversity varies with the evolutionary histories of the component species.

Keywords

Insect–fungus interaction Multiple infections Parasitism Coevolution Termites 

References

  1. Aanen D.K. 2006. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol. Lett. 2: 209-212Google Scholar
  2. Aanen D.K., Eggleton P., Rouland-Lefèvre C., Guldberg-Frøslev T., Rosendahl S. and Boomsma J.J. 2002. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99: 14887-14892Google Scholar
  3. Aanen D.K., De Fine Licht H.H., Debets A.J.M., Kerstes N.A.G., Hoekstra R.F. and Boomsma J.J. 2009. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326: 1103-1106Google Scholar
  4. Austin J.W., Szalanski A.L., Uva P., Bagnères A.G. and Kence A. 2002. A comparative genetic analysis of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95: 753-760Google Scholar
  5. Brown J.K.M. and Hovmøller M.S. 2002. Epidemiology - Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297: 537-541Google Scholar
  6. Bruns T.D., White T.J. and Taylor J.W. 1991. Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22: 525-564Google Scholar
  7. Frank S.A. 1994. Kin selection and virulence in the evolution of protocells and parasites. Proc. R. Soc. Lond. B 258: 153-161Google Scholar
  8. Gardes M., White T.J., Fortin J.A., Bruns T.D. and Taylor J.W. 1991. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J. Bot. 69: 180-190Google Scholar
  9. Hajek A.E. and St. Leger R.J. 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39: 293-322Google Scholar
  10. Hall T.A. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98Google Scholar
  11. Heiman M. 1997. Webcutter 2.0. http://www.firstmarket.com/cutter/cut2.html
  12. Henrion B., Letacon F. and Martin F. 1992. Rapid identification of genetic-variation of ectomycorrhizal fungi by amplification of ribosomal-RNA genes. New Phytol. 122: 289-298Google Scholar
  13. Hölldobler B. and Wilson E.O. 1990. The Ants. Harvard University Press, Cambridge. 732 ppGoogle Scholar
  14. James T.Y., Kauff F., Schoch C.L., Matheny P.B., Hofstetter V., Cox C.J., Celio G., Gueidan C., Fraker E., Miadlikowska J., Lumbsch H.T., Rauhut A., Reeb V., Arnold A.E., Amtoft A., Stajich J.E., Hosaka K., Sung G.H., Johnson D., O’Rourke B., Crockett M., Binder M., Curtis J.M., Slot J.C., Wang Z., Wilson A.W., Schüßler A., Longcore J.E., O’Donnell K., Mozley-Standridge S., Porter D., Letcher P.M., Powell M.J., Taylor J.W., White M.M., Griffith G.W., Davies D.R., Humber R.A., Morton J.B., Sugiyama J., Rossman A.Y., Rogers J.D., Pfister D.H., Hewitt D., Hansen K., Hambleton S., Shoemaker R.A., Kohlmeyer J., Volkmann-Kohlmeyer B., Spotts R.A., Serdani M., Crous P.W., Hughes K.W., Matsuura K., Langer E., Langer G., Untereiner W.A., Lücking R., Büdel B., Geiser D.M., Aptroot A., Diederich P., Schmitt I., Schultz M., Yahr R., Hibbett D.S., Lutzoni F., McLaughlin D.J., Spatafora J.W. and Vilgalys R. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818-822Google Scholar
  15. Katoh H., Miura T., Maekawa K., Shinzato N. and Matsumoto T. 2002. Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Mol. Ecol. 11: 1565-1572Google Scholar
  16. Korb J. and Aanen D.K. 2003. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav. Ecol. Sociobiol. 53: 65-71Google Scholar
  17. Kutnik M., Uva P., Brinkworth L. and Bagnères A.G. 2004. Phylogeography of two European Reticulitermes (Isoptera) species: the Iberian refugium. Mol. Ecol. 13: 3099-3113Google Scholar
  18. Leal-Bertioli S.C.M., Butt T.M., Peberdy J.F. and Bertioli D.J. 2000. Genetic exchange in Metarhizium anisopliae strains co-infecting Phaedon cochleariae is revealed by molecular markers. Mycol. Res. 104: 409-414Google Scholar
  19. Matsuura K. 2005. Distribution of termite egg-mimicking fungi (“termite balls”) in Reticulitermes spp. (Isoptera: Rhinotermitidae) nests in Japan and the United States. Appl. Entomol. Zool. 40: 53-61Google Scholar
  20. Matsuura K. 2006. Termite-egg mimicry by a sclerotium-forming fungus. Proc. R. Soc. Lond. B 273: 1203-1209Google Scholar
  21. Matsuura K. and Yashiro T. 2010. Parallel evolution of termite-egg mimicry by sclerotium-forming fungi in distant termite groups. Biol. J. Linn. Soc. 100: 531-537Google Scholar
  22. Matsuura K., Tanaka C. and Nishida T. 2000. Symbiosis of a termite and a sclerotium-forming fungus: sclerotia mimic termite eggs. Ecol. Res. 15: 405-414Google Scholar
  23. Matsuura K., Kobayashi N. and Yashiro T. 2007. Seasonal patterns of egg production in field colonies of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Pop. Ecol. 49: 179-183Google Scholar
  24. Matsuura K., Yashiro T., Shimizu K., Tatsumi S. and Tamura T. 2009. Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase. Curr. Biol. 19: 30-36Google Scholar
  25. Mueller U.G., Rehner S.A. and Schultz T.R. 1998. The evolution of agriculture in ants. Science 281: 2034-2038Google Scholar
  26. Mueller U.G., Gerardo N.M., Aanen D.K., Six D.L. and Schultz T.R. 2005. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36: 563-595Google Scholar
  27. Nylander J.A.A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  28. Pantou M.P., Mavridou A. and Typas M.A. 2003. IGS sequence variation, group-I introns and the complete nuclear ribosomal DNA of the entomopathogenic fungus Metarhizium: excellent tools for isolate detection and phylogenetic analysis. Fungal Genet. Biol. 38: 159-174Google Scholar
  29. Poulsen M. and Boomsma J.J. 2005. Mutualistic fungi control crop diversity in fungus-growing ants. Science 307: 741-744Google Scholar
  30. Punja Z.K., Grogan R.G. and Adams G.C. 1982. Influence of nutrition, environment, and the isolate, on basidiocarp formation, development, and structure in Athelia (Sclerotium) rolfsii. Mycologia 74: 917-926Google Scholar
  31. Ronquist F. and Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574Google Scholar
  32. Schultz T.R., Mueller U.G., Currie C.R. and Rehner S.A. 2005. Reciprocal illumination: a comparison of agriculture in humans and in fungus-growing ants. In: Insect-Fungal Associations: Ecology and Evolution (Vega F.E. and Blackwell M., Eds), Oxford University Press, Oxford. pp 149-190Google Scholar
  33. Selosse M.A. 2001. Adding pieces to fungal mosaics. New Phytol. 149: 159-162Google Scholar
  34. Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651-701Google Scholar
  35. Sugita T., Kodama M., Saito M., Ito T., Kato Y., Tsuboi R. and Nishikawa A. 2003. Sequence diversity of the intergenic spacer region of the rRNA gene of Malassezia globosa colonizing the skin of patients with atopic dermatitis and healthy individuals. J. Clin. Microbiol. 41: 3022-3027Google Scholar
  36. Sugita T., Tajima M., Amaya M., Tsuboi R. and Nishikawa A. 2004. Genotype analysis of Malassezia restricta as the major cutaneous flora in patients with atopic dermatitis and healthy subjects. Microbiol. Immunol. 48: 755-759Google Scholar
  37. Talluri G., Mangone C., Freyle J., Shirazian D., Lehman H. and Wise G.J. 1998. Polymerase chain reaction used to detect candidemia in patients with candiduria. Urology 51: 501-505Google Scholar
  38. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. and Higgins D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882Google Scholar
  39. Vega F.E. and Blackwell M. 2005. Insect-Fungal Associations: Ecology and Evolution. Oxford University Press, Oxford. 333 ppGoogle Scholar
  40. Walsh P.S., Metzger D.A. and Higuchi R. 1991. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506-513Google Scholar
  41. White T.J., Bruns T., Lee S. and Taylor L. 1990. Amplification and direct sequencing of fungal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (Innis M.A., Gelfand D.H., Sninsky J.J. and White T.J., Eds), Academic Press, San Diego. pp 315-322Google Scholar
  42. Yashiro T. and Matsuura K. 2007. Distribution and phylogenetic analysis of termite egg-mimicking fungi “termite balls” in Reticulitermes termites. Ann. Entomol. Soc. Am. 100: 532-538Google Scholar

Copyright information

© International Union for the Study of Social Insects (IUSSI) 2010

Authors and Affiliations

  1. 1.Laboratory of Insect Ecology, Graduate School of Environmental ScienceOkayama UniversityKita-kuJapan
  2. 2.Laboratory of Environmental Mycoscience, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations