Advertisement

Insectes Sociaux

, Volume 57, Issue 2, pp 147–155 | Cite as

Utilizing rabbit immunoglobulin G protein for mark-capture studies on the desert subterranean termite, Heterotermes aureus (Snyder)

  • Paul B. BakerEmail author
  • James R. Hagler
  • Ruben Marchosky
  • Scott A. Machtley
  • Jessica M. Brown
  • Michael A. Riehle
  • David E. Bellamy
Research Article

Abstract

Mark-capture dispersal studies were conducted to investigate the feasibility of marking the southwestern desert subterranean termite, Heterotermes aureus (Snyder) with rabbit immunoglobulin G (IgG). In turn, short-range dispersal patterns of H. aureus were measured across a 20-m diameter desert landscape at three distinct field locations. Each location consisted of 51 termite feeding stations containing corrugated cardboard. The central feeding station (CFS) at each location was impregnated with rabbit IgG. A circular grid was then constructed around each CFS that consisted of 50 additional unmarked cardboard feeding stations strategically placed around the CFS at distances of 1.5, 2.0, 4.0, 7.0 or 10.0 m. Termites self-marked with rabbit IgG by feeding on the marked bait. The CFS and the 50 peripheral feeding stations were sampled for marked termites twice at each location 17–65 days after the marked bait was placed at the CFS to determine the spatial dispersal patterns of H. aureus within each research grid. Termites that self marked by feeding on rabbit IgG marked bait were detected by an anti-rabbit IgG enzyme-linked immunosorbent assay (ELISA). Generally, the CFSs contained the highest frequency of marked termites with 28.0% of the individuals assayed from the CFSs containing rabbit IgG. Over the course of the study, 39 of the unmarked peripheral feeding stations contained at least one marked termite. Of the termites assayed from the peripheral stations (n = 2,955), 124 or 4.2% of the individuals contained the mark. The average distance traveled by the marked termites collected at the peripheral feeding stations was 5.7 ± 3.3 m from the CFSs. We also examined single nucleotide polymorphisms (SNPs) from termites collected at each field site. Data indicated that each field site were genetically distinct and therefore non-related termites. We discuss the advantages and limitations of marking termites with rabbit IgG for dispersal studies.

Keywords

Protein marking ELISA Dispersal Rabbit IgG 

Notes

Acknowledgments

We would like to thank Dan Langhorst, Chrissie Pflipsen, Erik Stone, Heather Terry, Alex Yelich and Hao Yu for excellent technical support. The manuscript was improved by comments from Dawn Gouge (The University of Arizona), Michael Haverty (University of California Berkeley and University of Arizona), and anonymous reviewers. This work was funded, in part, by BASF.

References

  1. Arab A., Costa-Leonardo A.M., Casarin F.E., Guaraldo A.C. and Chaves R.C. 2005. Foraging activity and demographic patterns of two termite species (Isoptera: Rhinotermitidae) living in urban landscapes in southeastern Brazil. Eur. J. Entomol. 102: 691–697Google Scholar
  2. Austin J.W., Szalanski A.L., Uva P., Bagnères A.G. and Kence A. 2002. A comparative genetic analysis of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Amer. 95: 6: 753–760CrossRefGoogle Scholar
  3. Baker P.B. and Bellamy D.E. 2006. Field and laboratory evaluation of persistence and bioavailability of soil termiticides to desert subterranean termite Heterotermes aureus (Isoptera: Rhinotermitidae). J. Econ. Entomol. 99: 1345–1353CrossRefPubMedGoogle Scholar
  4. Baker P.B. and Haverty M.I. 2007. Foraging populations and distances of the desert subterranean termite, Heterotermes aureus (Isoptera: Rhinotermitidae), associated with structures in southern Arizona. J. Econ. Entomol. 100: 1381–1390CrossRefPubMedGoogle Scholar
  5. Blackmer J.L., Hagler J.R., Simmons G.S. and Canas L.A. 2004. Comparative dispersal of Homalodisca coagulata and Homalodisca liturata (Homoptera: Cicadellidae). Environ. Entomol. 33: 88–99CrossRefGoogle Scholar
  6. Blackmer J.L., Hagler J.R., Simmons G.S. and Henneberry T.J. 2006. Dispersal of Homalodisca vitripennis (Homoptera: Cicadellidae) from a point release site in citrus. Environ. Entomol. 35: 1617–1625CrossRefGoogle Scholar
  7. Buczkowski G. and Bennett G. 2006. Dispersal central-place foraging in the polydomous odorous house ant, Tapinoma sessile as revealed by a protein marker. Insect. Soc. 53: 282–290CrossRefGoogle Scholar
  8. Buczkowski G. and Bennett G. 2007. Protein marking reveals predation on termites by the woodland ant, Aphaenogaster rudis. Insect. Soc. 54: 219–224CrossRefGoogle Scholar
  9. Buczkowski G., Wang C. and Bennett G. 2007. Immunomarking reveals food flow and feeding relationships in the eastern subterranean termite, Reticulitermes flavipes (Kollar). Environ. Entomol. 36: 173–182CrossRefPubMedGoogle Scholar
  10. Costa-Leonardo A.M., Casarin F.E. and Ferreira Jr J. 2003. Estimates of foraging population and territory of Heterotermes tenuis colonies using mark-release-recapture (Isoptera: Rhinotermitidae). Sociobiology 42: 807–814Google Scholar
  11. DeGrandi-Hoffman G. and Hagler J.R. 2000. The flow of incoming nectar through a honey bee (Apis mellifera L.) colony as revealed by a protein marker. Insect. Soc. 47: 302–306CrossRefGoogle Scholar
  12. Evans T. 2001. Estimating relative decline in populations of subterranean termites (Isoptera: Rhinotermitidae) due to baiting. J. Econ Entomol. 94: 1602–1609CrossRefPubMedGoogle Scholar
  13. Evans T. 2002. Tunnel specificity and forager movement in subterranean termites (Isoptera: Rhinotermitidae and Termitidae). Bull. Entomol. Res. 92: 193–201CrossRefPubMedGoogle Scholar
  14. Evans T., Lenz M. and Gleeson P. 1998. Testing assumptions of mark-capture protocols for estimating population size using Australian mound-building, subterranean termites. Ecol. Entomol. 23: 139–159CrossRefGoogle Scholar
  15. Evans T., Lenz M. and Gleeson P. 1999. Estimating population size and forager movement in a tropical subterranean termite (Isoptera: Rhinotermitidae). Environ. Entomol. 28: 823–830Google Scholar
  16. Grace J.K. 1990. Mark-capture studies with Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 16: 297–303Google Scholar
  17. Grace J.K. and Abdallay A. 1989. Evaluation of the dye marker Sudan red 7B with Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 15: 71–77Google Scholar
  18. Haagsma K.A. and Rust M.K. 1993. Two marking dyes useful for monitoring field populations of Reticulitermes hesperus (Isoptera: Rhinotermitidae). Sociobiology 23: 155–165Google Scholar
  19. Hagler J.R. 1997. Field retention of a novel mark-release-recapture method. Environ. Entomol. 26: 1079–1086Google Scholar
  20. Hagler J.R. and Jackson C.G. 2001. Methods for marking insects: Current techniques and future prospects. Annu. Rev. Entomol. 46: 511–543CrossRefPubMedGoogle Scholar
  21. Hagler J.R. and Naranjo S.E. 2005. Use of a gut content ELISA to detect whitefly predator feeding activity after field exposure to different insecticide treatments. Biocontrol Sci. Tech. 15: 321–339CrossRefGoogle Scholar
  22. Hagler J.R., Cohen A.C., Bradley-Dunlop D. and Enriquez F.J. 1992. New approach to mark insects for feeding and dispersal studies. Environ. Entomol. 21: 20–25Google Scholar
  23. Hagler J.R., Jackson C.G., Henneberry T.J. and Gould J.R. 2002. Parasitoid mark-release-recapture techniques: II. Development and application of a protein marking technique for Eretmocerus spp., parasitoids of Bemisia argentifolii. Biocontrol Sci. Tech. 12: 661–675CrossRefGoogle Scholar
  24. Hagler J.R., Baker P.B., Marchosky R., Machtley S.A. and Bellamy D.E. 2009. Methods to mark termites with protein for mark-recapture and mark-capture type studies. Insect. Soc. 56: 213–220CrossRefGoogle Scholar
  25. Haverty M.I. and Nutting W.L. 1975. Density, dispersion, and composition of desert termite foraging populations and their relationship to superficial dead wood. Environ. Entomol. 4: 480–486Google Scholar
  26. Jenkins T.M., Dean R.E., Verkerk R. and Forschler B.T. 2001. Phylogenetic analysis of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy, and introduction dynamics. Mol. Phylogenet. Evol. 20: 286–293CrossRefPubMedGoogle Scholar
  27. Jones S.C. 1990. Delineation of Heterotermes aureus (Isoptera: Rhinotermitidae) foraging territories in a Sonoran desert grassland. Environ. Entomol. 19: 1047–1054Google Scholar
  28. Jones S.C., Trosset M. and Nutting W.L. 1987. Biotic and abiotic influences on foraging of Heterotermes aureus (Snyder) (Isoptera: Rhinotermitidae). Environ. Entomol. 16: 791–795Google Scholar
  29. Jones V.P., Hagler J.R., Brunner J., Baker C. and Wilburn T. 2006. An inexpensive immunomarking technique for studying movement patterns of naturally occurring insect populations. Environ. Entomol. 35: 827–836CrossRefGoogle Scholar
  30. Loreto R.G., DeSouza O. and Elliot S.L. 2009. Colored glue as a tool to mark termites (Cornitermes cumulans; Isoptera: Termitidae) for ecological and behavioral studies. Sociobiology 54: 351–360Google Scholar
  31. Oi F.M. 2000. Purple dye-marker for Reticulitermes spp. (Isoptera: Rhinotermitidae). Fla. Entomol. 83: 112–113CrossRefGoogle Scholar
  32. Su N.-Y. and Scheffrahn R.H. 1990. Comparison of eleven termiticides against the Formosan subterranean termite and eastern subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 83: 1918–1924Google Scholar
  33. Su N.-Y., Scheffrahn R.H. and Ban P.M. 1988. Retention time and toxicity of a dye marker, Sudan Red 7B on the Formosan and eastern subterranean termite (Isoptera: Rhinotermitidae). J. Entomol. Sci. 23: 235–239Google Scholar
  34. Su N.-Y., Ban P.M. and Scheffrahn R.H. 1991. Evaluation of twelve dye markers for population studies of the eastern and Formosan subterranean termite (Isoptera: Rhinotermitidae). Sociobiology 19: 349–362Google Scholar
  35. Su N.-Y., Ban P.M. and Scheffrahn R.H. 1993. Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in Southeastern Florida. Environ. Entomol. 22: 1113–1117Google Scholar
  36. Thorne B., Russek-Cohen E., Forschler B., Breisch N. and Traniello J. 1996. Evaluation of mark-release-recapture methods for estimating forager population size of subterranean termite (Isoptera: Rhinotermitidae) colonies. Environ. Entomol. 25: 938–951Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Paul B. Baker
    • 1
    Email author
  • James R. Hagler
    • 2
  • Ruben Marchosky
    • 1
  • Scott A. Machtley
    • 2
  • Jessica M. Brown
    • 1
  • Michael A. Riehle
    • 1
  • David E. Bellamy
    • 3
  1. 1.Department of EntomologyUniversity of ArizonaTucsonUSA
  2. 2.USDA-ARS, Arid Land Agricultural Research CenterMaricopaUSA
  3. 3.ED&A ConsultingBuckleyUSA

Personalised recommendations