Insectes Sociaux

, Volume 56, Issue 3, pp 285–288 | Cite as

Ploidy of the eusocial beetle Austroplatypus incompertus (Schedl) (Coleoptera, Curculionidae) and implications for the evolution of eusociality

  • S. M. Smith
  • A. J. Beattie
  • D. S. Kent
  • A. J. Stow
Research Article


In the hymenopterans, haplodiploidy, leading to high-genetic relatedness amongst full sisters has been regarded as critical to kin selection and inclusive fitness hypotheses that explain the evolution of eusociality and altruistic behaviours. Recent evidence for independent origins of eusociality in phylogenetically diverse taxa has led to the controversy regarding the general importance of relatedness to eusociality and its evolution. Here, we developed a highly polymorphic microsatellite marker to test whether the eusocial ambrosia beetle Austroplatypus incompertus (Schedl) is haplodiploid or diplodiploid. We found that both males and females of A. incompertus are diploid, signifying that altruistic behaviour resulting from relatedness asymmetries did not play a role in the evolution of eusocialty in this species. This provides additional evidence against the haplodiploidy hypothesis and implicates alternative hypotheses for the evolution of eusociality.


Coleoptera Eusociality Diplodiploidy Kin selection Evolution 



We are grateful to Richard Frankham, Stephen Hoggard and anonymous reviewers for helpful comments on the draft of the manuscript. This research was partially supported by an Australian Research Council grant (DP0879229).


  1. Boomsma J.J. 2007. Kin selection versus sexual selection: why the ends do not meet. Curr. Biol. 17: 673–683CrossRefGoogle Scholar
  2. Crozier R.H. 2008. Advanced eusociality, kin selection and male haploidy. Aust. J. Entomol. 47: 2–8CrossRefGoogle Scholar
  3. Farrell B.D., Sequeira A.S., O’Meara B.C., Normark B.B., Chung J.H. and Jordal B.H. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55: 2011–2027PubMedGoogle Scholar
  4. Foster K.R., Wenseleers T. and Ratnieks F.L.W. 2006. Kin selection is the key to altruism. Trends Ecol. Evol. 21: 57–60PubMedCrossRefGoogle Scholar
  5. Hamilton W.D. 1964. The genetical theory of social behaviour I, II. J. Theor. Biol. 7: 1–52PubMedCrossRefGoogle Scholar
  6. Hughes W.O.H., Oldroyd B.P., Beekman M. and Ratnieks F.L.W. 2008. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320: 1213–1216PubMedCrossRefGoogle Scholar
  7. Kent D.S. 2001. The Biology of the Ambrosia Beetle Austroplatypus incompertus (Schedl). Ph.D. thesis, University of Sydney. 229 ppGoogle Scholar
  8. Kent D.S. 2008. Mycangia of the ambrosia beetle, Austroplatypus incompertus (Schedl) (Coleoptera: Curculionidae: Platypodinae). Aust. J. Entomol. 47: 9–12CrossRefGoogle Scholar
  9. Kent D.S. and Simpson J.A. 1992. Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae). Naturwissenschaften 79: 86–87CrossRefGoogle Scholar
  10. Kirkendall L.R. 2006. A new host-specific ambrosia beetle, Xyleborus vochysiae (Curculionidae: Scolytinae), from Central America breeding in live trees. Ann. Entomol. Soc. Am. 99: 211–217CrossRefGoogle Scholar
  11. Kirkendall L.R., Kent D.S. and Raffa K.A. 1997. Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behaviour. In: The Evolution of Social Behaviour in Insects and Arachnids (Choe J. and Crespi B., Eds), Cambridge University Press, Cambridge, pp 181–215Google Scholar
  12. Marshall T.C., Slate J., Kruuk L.E.B. and Pemberton J.M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639–655PubMedCrossRefGoogle Scholar
  13. Normark B.B., Jordal B.H. and Farrell B.D. 1999. Origin of a haplodiploid beetle lineage. Proc. R. Soc. Lond. B 266: 2253–2259CrossRefGoogle Scholar
  14. Peer K. and Taborsky M. 2007. Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behav. Ecol. Sociobiol. 61: 729–739CrossRefGoogle Scholar
  15. Raymond M. and Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249Google Scholar
  16. Rozen S. and Skaletsky H.J. 2000. Primer 3. Code available at
  17. Smith S.M. and Stow A.J. 2008. Isolation and characterisation of novel microsatellite loci from the coppertail skink (Ctenotus taeniolatus). Mol. Ecol. Resour. 8: 923–925CrossRefGoogle Scholar
  18. Sunnucks P. and Hales D.F. 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13: 510–523PubMedGoogle Scholar
  19. West S.A., Griffin A.S. and Gardner A. 2007. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20: 415–432PubMedCrossRefGoogle Scholar
  20. Wilson E.O. 2008. One giant leap: how insects achieved altruism and colonial life. BioScience 58: 17–25CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • S. M. Smith
    • 1
  • A. J. Beattie
    • 1
  • D. S. Kent
    • 2
  • A. J. Stow
    • 1
  1. 1.Department of Biological SciencesMacquarie UniversityNorth RydeAustralia
  2. 2.Forest Science Centre, Forest Resources ResearchNSW Department of Primary IndustriesBeecroftAustralia

Personalised recommendations