Geometric and Functional Analysis

, Volume 28, Issue 6, pp 1756–1779 | Cite as

Volumes and Siegel–Veech constants of \({\mathcal{H}}\) (2G − 2) and Hodge integrals

  • Adrien SauvagetEmail author


In the 80’s H. Masur and W. Veech defined two numerical invariants of strata of abelian differentials: the volume and the Siegel–Veech constant. Based on numerical experiments, A. Eskin and A. Zorich proposed a series of conjectures for the large genus asymptotics of these invariants. By a careful analysis of the asymptotic behavior of quasi-modular forms, D. Chen, M. Moeller, and D. Zagier proved that this conjecture holds for strata of differentials with simple zeros. Here, with a mild assumption of existence of a good metric, we show that the conjecture holds for the other extreme case, i.e. for strata of differentials with a unique zero. Our main ingredient is the expression of the numerical invariants of these strata in terms of Hodge integrals on moduli spaces of curves.

Keywords and phrases

Moduli space of curves Translation surfaces Masur–Veech volumes Hodge integrals 

Mathematics Subject Classification

14H15 14N10 30F30 30F60 14C17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I would like to thank Dimitri Zvonkine, Martin Moëller, Dawei Chen, Xavier Blot, Siarhei Finski and Felix Janda for very useful conversations on intersection of tautological classes over spaces of differentials. I am also very thankful to Anton Zorich and Charles Fougeron for having introduced me to the topic of large-genus invariants (and for having provided tables of numerical computations that allowed me to understand part of the results of the paper). Finally, I am very grateful to Elie de Panafieu for his precious help to handle the asymptotic analysis.


  1. AEZ16.
    Athreya J.S., Eskin A., Zorich A.: Right-angled billiards and volumes of moduli spaces of quadratic differentials on \({\mathbb{C}{\rm P}^{1}}\) . Ann. Sci. Éc. Norm. Supér. (4) 49(6), 1311–1386 (2016) With an appendix by Jon Chaika.MathSciNetCrossRefGoogle Scholar
  2. BCGGM16.
    M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Moller. Compactification of strata of abelian differentials. (2016), arXiv:1604.08834.
  3. Ben75.
    Edward., Bender. A.: An asymptotic expansion for the coefficients of some formal power series. J. Lond. Math. Soc. 9(2), 451–458 (1974)MathSciNetzbMATHGoogle Scholar
  4. CMZ16.
    D. Chen,M. Moller, and Don Zagier. Quasimodularity and large genus limits of Siegel–Veech constantss. (2016), arXiv:1606.04065.
  5. AK14.
    Eskin A., Kontsevich M., Zorich A.: Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow. Publ. Math. Inst. Hautes üller geodesic flow. Publ. Math. Inst. Hautes Études Sci. 120, 207–333 (2014)CrossRefGoogle Scholar
  6. AO01.
    Eskin A., Okounkov. A.: Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials. Invent. Math., 145(1), 59–103 (2001)MathSciNetCrossRefGoogle Scholar
  7. AZ15.
    Eskin A., Zorich A.: Volumes of strata of Abelian differentials and Siegel– Veech constants in large genera. Arnold Math. J., 1(4), 481–488 (2015)MathSciNetCrossRefGoogle Scholar
  8. CP00.
    Faber C., Pandharipande R.: Hodge integrals and Gromov-Witten theory. Invent. Math., 139(1), 173–199 (2000)MathSciNetCrossRefGoogle Scholar
  9. MZ97.
    M. Kontsevich and A. Zorich. Lyapunov exponents and hodge theory. (1997), arXiv:hep-th/9701164.
  10. MZ03.
    Kontsevich M., Zorich A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math., 153(3), 631–678 (2003)MathSciNetCrossRefGoogle Scholar
  11. Mas82.
    Howard Masur.: Interval exchange transformations and measured foliations. Ann. of Math. (2) 115(1), 169–200 (1982)MathSciNetCrossRefGoogle Scholar
  12. MZ15.
    Maryam Mirzakhani., Peter Zograf.: Towards large genus asymptotics of intersection numbers on moduli spaces of curves. Geom. Funct. Anal., 25(4), 1258–1289 (2015)MathSciNetCrossRefGoogle Scholar
  13. Mum77.
    Mumford D.: Hirzebruch’s proportionality theorem in the noncompact case. Invent. Math 42, 239–272 (1977)MathSciNetCrossRefGoogle Scholar
  14. Mum83.
    D. Mumford. Towards an enumerative geometry of the moduli space of curves. In: Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., Birkhäuser Boston, Boston, MA, (1983), pp. 271–328.Google Scholar
  15. Sau.
    A. Sauvaget. Cohomology classes of strata of abelian differentials. arXiv:1701.07867.
  16. Vec82.
    Veech W.A.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. (2) 115(1), 201–242 (1982)MathSciNetCrossRefGoogle Scholar
  17. Voi02.
    Voisin C.: Hodge theory and complex algebraic geometry I, volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2002) Translated from the French original by Leila Schneps. (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IMJ-PRGUniversité Pierre et Marie CurieParisFrance

Personalised recommendations