Skip to main content
Log in

A Gutzwiller type trace formula for the magnetic Dirac operator

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

For manifolds including metric-contact manifolds with non-resonant Reeb flow, we prove a Gutzwiller type trace formula for the associated magnetic Dirac operator involving contributions from Reeb orbits on the base. As an application, we prove a semiclassical limit formula for the eta invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math.Proc. Cambridge Philos. Soc., 77, 43–69 (1975)

    Article  MathSciNet  Google Scholar 

  2. Atiyah M.F., Patodi V.K., Singer. I.M.: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Cambridge Philos. Soc., 79, 71–99 (1976)

    Article  MathSciNet  Google Scholar 

  3. Berline N., Getzler E., Vergne M.: Heat kernels and Dirac operators. Grundlehren Text Editions, Springer, Berlin (2004). Corrected reprint of the 1992 original.

    MATH  Google Scholar 

  4. J.-M. Bismut. The hypoelliptic Dirac operator. In: Geometry and dynamics of groups and spaces, vol. 265 of Progr. Math., Birkhaäser, Basel (2008), pp. 113–246.

  5. J.-M. Bismut. Eta invariants and the hypoelliptic Laplacian. J. Eur. Math. Soc. (JEMS), (2018) to appear.

  6. Bismut J.-M., Freed D.S.: The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem. Comm. Math. Phys., 107, 103–163 (1986)

    Article  MathSciNet  Google Scholar 

  7. Colinde Verdière Y.: Spectrum of the Laplace operator and periodic geodesics: thirty years after. Ann. Inst. Fourier (Grenoble), 57, 2429–2463 (2007) Festival Yves Colin de Verdière.

    Article  MathSciNet  Google Scholar 

  8. Y. Colin de Verdiere, L. Hillairet and E. Trelat. Spectral asymptotics for sub-Riemannian Laplacians II: micro-local Weyl measures for the Martinet and the Grushin cases, (2016). in preparation.

  9. Colin de Verdière Y., Hillairet L., Trélat E.: Spectral asymptotics for sub-Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case. Duke Math. J., 167, 109–174 (2018)

    Article  MathSciNet  Google Scholar 

  10. de Gosson M.: Maslov indices on the metaplectic group Mp(n). Ann. Inst. Fourier (Grenoble), 40, 537–555 (1990)

    Article  MathSciNet  Google Scholar 

  11. de Gosson M.: Symplectic geometry and quantum mechanics, vol. 166 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (2006) Advances in Partial Differential Equations (Basel)

    Book  Google Scholar 

  12. Dimassi M., Sjöstrand J.: Spectral asymptotics in the semi-classical limit, vol. 268 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  13. Duistermaat J.J., Guillemin V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math., 29, 39–79 (1975)

    Article  MathSciNet  Google Scholar 

  14. Françoise J.-P., Guillemin V.: On the period spectrum of a symplectic mapping. J. Funct. Anal., 100, 317–358 (1991)

    Article  MathSciNet  Google Scholar 

  15. S. Goette. Computations and applications of \({\eta}\) invariants. In: Global differential geometry, vol. 17 of Springer Proc. Math., Springer, Heidelberg, (2012), pp. 401– 433.

    Google Scholar 

  16. Guillemin. V.: Wave-trace invariants. Duke Math. J., 83, 287–352 (1996)

    Article  MathSciNet  Google Scholar 

  17. Guillemin V., Paul T.: Some remarks about semiclassical trace invariants and quantum normal forms. Comm. Math. Phys., 294, 1–19 (2010)

    Article  MathSciNet  Google Scholar 

  18. V. Guillemin and S. Sternberg. Semi-Classical Analysis. International Press of Boston, (2013).

  19. Gutzwiller M.C.: Chaos in classical and quantum mechanics, vol. 1 of Interdisciplinary Applied Mathematics. Springer, New York (1990)

    Book  Google Scholar 

  20. Iantchenko A., Sjöstrand J.: Birkhoff normal forms for Fourier integral operators. II. Amer. J. Math., 124, 817–850 (2002)

    Article  MathSciNet  Google Scholar 

  21. Iantchenko A., Sjöstrand J., Zworski M.: Birkhoff normal forms in semi-classical inverse problems. Math. Res. Lett., 9, 337–362 (2002)

    Article  MathSciNet  Google Scholar 

  22. Ma X., Marinescu G.: Holomorphic Morse inequalities and Bergman kernels, vol. 254 of Progress in Mathematics. Birkhäuser Verlag, Basel (2007)

    Google Scholar 

  23. Millson J.J.: Closed geodesics and the \({\eta}\)-invariant. Ann. of Math. 108(2), 1–39 (1978)

    Article  MathSciNet  Google Scholar 

  24. Moscovici H., Stanton R.J.: Eta invariants of Dirac operators on locally symmetric manifolds. Invent. Math., 95, 629–666 (1989)

    Article  MathSciNet  Google Scholar 

  25. Savale N.: Asymptotics of the Eta Invariant. Comm. Math. Phys., 332, 847–884 (2014)

    Article  MathSciNet  Google Scholar 

  26. Savale N.: Koszul complexes, Birkhoff normal form and the magnetic Dirac operator. Anal. PDE, 10, 1793–1844 (2017)

    Article  MathSciNet  Google Scholar 

  27. Sternberg S.: Infinite Lie groups and the formal aspects of dynamical systems. J. Math. Mech., 10, 451–474 (1961)

    MathSciNet  MATH  Google Scholar 

  28. Taubes C.H.: The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol., 11, 2117–2202 (2007)

    Article  MathSciNet  Google Scholar 

  29. A. Uribe. Trace formulae. In: First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), vol. 260 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2000), pp. 61–90.

  30. Zelditch S.: Wave invariants at elliptic closed geodesics. Geom. Funct. Anal., 7, 145–213 (1997)

    Article  MathSciNet  Google Scholar 

  31. Zelditch S.: Wave invariants for non-degenerate closed geodesics. Geom. Funct. Anal., 8, 179–217 (1998)

    Article  MathSciNet  Google Scholar 

  32. Zworski M.: Semiclassical analysis, vol. 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for a careful reading and several constructive suggestions and improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Savale.

Additional information

The author acknowledges the financial support of the Agence Nationale de la Recherche, Project ANR-15-CE40-0018 (Sub-Riemannian Geometry and Interactions).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savale, N. A Gutzwiller type trace formula for the magnetic Dirac operator. Geom. Funct. Anal. 28, 1420–1486 (2018). https://doi.org/10.1007/s00039-018-0462-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0462-y

Navigation