Geometric and Functional Analysis

, Volume 25, Issue 6, pp 1799–1821 | Cite as

A compactness theorem for the Seiberg–Witten equation with multiple spinors in dimension three

  • Andriy HaydysEmail author
  • Thomas Walpuski


We prove that a sequence of solutions of the Seiberg–Witten equation with multiple spinors in dimension three can degenerate only by converging (after rescaling) to a Fueter section of a bundle of moduli spaces of ASD instantons.


Gauge Theory Modulus Space Critical Radius Compactness Theorem Frequency Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AD79.
    F. J. Almgren Jr. Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. Minimal submanifolds and geodesics. In: Proceedings of the Japan-United States Sem., Tokyo, 1977, (1979), pp. 1–6. Zbl0439.49028Google Scholar
  2. BGM05.
    C. Bär, P. Gauduchon, and A. Moroianu. Generalized cylinders in semi-Riemannian and spin geometry. Mathematische Zeitschrift (3)249 (2005), 545–580. Zbl1068.53030Google Scholar
  3. Che97.
    W. Chen. Casson’s invariant and Seiberg–Witten gauge theory. Turkish Journal of Mathematics (1)21 (1997), 61–81. Zbl0891.57021Google Scholar
  4. DK90.
    S.K. Donaldson and P.B. Kronheimer. The geometry of four-manifolds. In: Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford Science Publications, New York (1990). Zbl0904.57001Google Scholar
  5. DS11.
    S.K. Donaldson and E.P. Segal. Gauge theory in higher dimensions, II. In: Surveys in Differential Geometry. Geometry of Special Holonomy and Related Topics, Vol. XVI. (2011), pp. 1–41. Zbl1256.53038Google Scholar
  6. Hay12.
    A. Haydys. Gauge theory, calibrated geometry and harmonic spinors. Journal of the London Mathematical Society (2)86 (2012), 482–498. (Zbl1256.81080)Google Scholar
  7. HHL98.
    Q. Han, R. Hardt, and F.-H. Lin. Geometric measure of singular sets of elliptic equations. Communications on Pure and Applied Mathematics (11–12)51 (1998), 1425–1443. Zbl0940.35065Google Scholar
  8. KM07.
    P.B. Kronheimer and T. Mrowka. Monopoles and three-manifolds. In: New Mathematical Monographs, Vol. 10. Cambridge University Press, Cambridge (2007). Zbl1158.57002Google Scholar
  9. Lim00.
    Y. Lim. Seiberg–Witten invariants for 3-manifolds in the case b1 = 0 or 1. Pacific Journal of Mathematics (1)195 (2000), 179–204. Zbl1015.57022Google Scholar
  10. NV14.
    A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs (2014).
  11. Tau13.
    C.H. Taubes. PSL(2;C) connections on 3-manifolds with L2 bounds on curvature. Cambridge Journal of Mathematics (2)1 (2013), 239–397 (Zbl06292859)Google Scholar
  12. Tau14.
    C.H. Taubes. The zero loci of Z/2 harmonic spinors in dimension 2, 3 and 4 (2014).
  13. Wal12.
    T. Walpuski. G2-instantons, associative submanifolds and Fueter sections (2012).
  14. Wal13.
    T. Walpuski, Gauge theory on G2-manifolds, Ph.D. Thesis (2013).

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations