Geometric and Functional Analysis

, Volume 25, Issue 3, pp 733–762

A relative Szemerédi theorem

Article

Abstract

The celebrated Green-Tao theorem states that there are arbitrarily long arithmetic progressions in the primes. One of the main ingredients in their proof is a relative Szemerédi theorem which says that any subset of a pseudorandom set of integers of positive relative density contains long arithmetic progressions. In this paper, we give a simple proof of a strengthening of the relative Szemerédi theorem, showing that a much weaker pseudorandomness condition is sufficient. Our strengthened version can be applied to give the first relative Szemerédi theorem for k-term arithmetic progressions in pseudorandom subsets of \({\mathbb{Z}_N}\) of density \({N^{-c_k}}\). The key component in our proof is an extension of the regularity method to sparse pseudorandom hypergraphs, which we believe to be interesting in its own right. From this we derive a relative extension of the hypergraph removal lemma. This is a strengthening of an earlier theorem used by Tao in his proof that the Gaussian primes contain arbitrarily shaped constellations and, by standard arguments, allows us to deduce the relative Szemerédi theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BMS.
    J. Balogh, R. Morris, and W. Samotij. Independent sets in hypergraphs. J. Amer. Math. Soc., to appear.Google Scholar
  2. BB.
    P. Bennett and T. Bohman. A note on the random greedy independent set algorithm. arXiv:1308.3732.
  3. BR09.
    B. Bollobás and O. Riordan. Metrics for sparse graphs. In: Surveys in combinatorics 2009, London Math. Soc. Lecture Note Ser., vol. 365, Cambridge University Press, Cambridge, 2009, pp. 211–287.Google Scholar
  4. BCLSV08.
    C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi. Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math., 219 (2008), 1801–1851.Google Scholar
  5. CGW89.
    Chung F.R.K., Graham R.L., Wilson R.M.: Quasi-random graphs. Combinatorica 9, 345–362 (1989)MATHMathSciNetCrossRefGoogle Scholar
  6. CCF09.
    A. Coja-Oghlan, C. Cooper, and A. Frieze. An efficient sparse regularity concept. SIAM J. Discrete Math., 23 (2009/10), 2000–2034.Google Scholar
  7. CFZ14.
    D. Conlon, J. Fox, and Y. Zhao. Extremal results in sparse pseudorandom graphs. Adv. Math., 256 (2014), 206–290.Google Scholar
  8. CFZ.
    D. Conlon, J. Fox, and Y. Zhao. Linear forms from the Gowers uniformity norm. Unpublished companion note.Google Scholar
  9. CG.
    D. Conlon and W.T. Gowers, Combinatorial theorems in sparse random sets. arXiv:1011.4310.
  10. CGSS14.
    D. Conlon, W.T. Gowers, W. Samotij, and M. Schacht. On the KŁR conjecture in random graphs. Israel J. Math., 203 (2014), 535–580.Google Scholar
  11. CM12.
    B. Cook and A. Magyar. Constellations in \({{\mathbb{P}}^d}\). Int. Math. Res. Not., 2012 (2012), 2794–2816.Google Scholar
  12. CMT.
    B. Cook, A. Magyar, and T. Titichetrakun. A multidimensional Szemerédi theorem in the primes. arXiv:1306.3025.
  13. FZ.
    J. Fox and Y. Zhao. A short proof of the multidimensional Szemerédi theorem in the primes. Amer. J. Math., to appear.Google Scholar
  14. FR02.
    P. Frankl and V. Rödl. Extremal problems on set systems. Random Structures Algorithms, 20 (2002), 131–164.Google Scholar
  15. FK99.
    Frieze A., Kannan R.: Quick approximation to matrices and applications. Combinatorica 19, 175–220 (1999)MATHMathSciNetCrossRefGoogle Scholar
  16. FK78.
    H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for commuting transformations. J. Analyse Math., 34 (1978), 275–291.Google Scholar
  17. GY03.
    D.A. Goldston and C.Y. Yıldırım. Higher correlations of divisor sums related to primes. I. Triple correlations. Integers, 3 (2003), A5, 66.Google Scholar
  18. Gow01.
    W.T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11 (2001), 465–588.Google Scholar
  19. Gow07.
    W.T. Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math., 166 (2007), 897–946.Google Scholar
  20. Gow10.
    W.T. Gowers. Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc., 42 (2010), 573–606. arXiv:0811.3103.
  21. GreenPC.
    B. Green. Personal communication.Google Scholar
  22. Gre05.
    B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct. Anal., 15 (2005), 340–376.Google Scholar
  23. GT08.
    B. Green and T. Tao. The primes contain arbitrarily long arithmetic progressions. Ann. of Math., 167 (2008), 481–547.Google Scholar
  24. GT10.
    B. Green and T. Tao. Linear equations in primes. Ann. of Math., 171 (2010), 1753–1850.Google Scholar
  25. Koh97.
    Y. Kohayakawa. Szemerédi’s regularity lemma for sparse graphs. Foundations of computational mathematics (Rio de Janeiro, 1997), Springer, Berlin, 1997, pp. 216–230.Google Scholar
  26. KSV09.
    D. Král’, O. Serra, and L. Vena. A combinatorial proof of the removal lemma for groups. J. Combin. Theory Ser. A, 116 (2009), 971–978.Google Scholar
  27. KSV12.
    D. Král’, O. Serra, and L. Vena. A removal lemma for systems of linear equations over finite fields. Israel J. Math. 187 (2012), 193–207.Google Scholar
  28. Le11.
    T.H. Lê. Green-Tao theorem in function fields. Acta Arith. 147 (2011), 129–152.Google Scholar
  29. LS06.
    L. Lovász and B. Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser. B 96 (2006), 933–957.Google Scholar
  30. LS07.
    L. Lovász and B. Szegedy. Szemerédi’s lemma for the analyst. Geom. Funct. Anal. 17 (2007), 252–270.Google Scholar
  31. Mat12a.
    L. Matthiesen, Correlations of the divisor function. Proc. Lond. Math. Soc. 104 (2012), 827–858.Google Scholar
  32. Mat12b.
    L. Matthiesen. Linear correlations amongst numbers represented by positive definite binary quadratic forms. Acta Arith. 154 (2012), 235–306.Google Scholar
  33. NRS06.
    B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs. Random Structures Algorithms 28 (2006), 113–179.Google Scholar
  34. RTTV08.
    O. Reingold, L. Trevisan, M. Tulsiani, and S. Vadhan. Dense Subsets of Pseudorandom Sets. In: 49th Annual IEEE symposium on foundations of computer science, IEEE Computer Society (2008), pp. 76–85.Google Scholar
  35. RS04.
    V. Rödl and J. Skokan. Regularity lemma for k-uniform hypergraphs. Random Structures Algorithms 25 (2004), 1–42.Google Scholar
  36. RS06.
    V. Rödl and J. Skokan. Applications of the regularity lemma for uniform hypergraphs. Random Structures Algorithms. 28 (2006), 180–194.Google Scholar
  37. RS78.
    I.Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles. In: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam (1978), pp. 939–945.Google Scholar
  38. ST.
    D. Saxton and A. Thomason. Hypergraph containers. Invent. Math., to appear.Google Scholar
  39. Sch.
    M. Schacht. Extremal results for random discrete structures. Submitted.Google Scholar
  40. Sco11.
    A. Scott. Szemerédi’s regularity lemma for matrices and sparse graphs. Combin. Probab. Comput. 20 (2011), 455–466.Google Scholar
  41. Sha10.
    A. Shapira. A proof of Green’s conjecture regarding the removal properties of sets of linear equations. J. Lond. Math. Soc. 81 (2010), 355–373.Google Scholar
  42. Sol03.
    J. Solymosi. Note on a Generalization of Roth’s Theorem. In: Discrete and computational geometry, Algorithms Combin., vol. 25, Springer, Berlin (2003), pp. 825–827.Google Scholar
  43. Sol04.
    J. Solymosi. A note on a question of Erdős and Graham. Combin. Probab. Comput. 13 (2004), 263–267.Google Scholar
  44. Sze75.
    E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 (1975), 199–245.Google Scholar
  45. Tao.
    T. Tao. A remark on Goldston-Yıldırım correlation estimates. Unpublished.Google Scholar
  46. Tao06a.
    T. Tao. The Gaussian primes contain arbitrarily shaped constellations. J. Anal. Math. 99 (2006), 109–176.Google Scholar
  47. Tao06b.
    T. Tao. A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113 (2006), 1257–1280.Google Scholar
  48. TZ08.
    T. Tao and T. Ziegler. The primes contain arbitrarily long polynomial progressions. Acta Math., 201 (2008), 213–305.Google Scholar
  49. TZ13.
    T. Tao and T. Ziegler. A multi-dimensional Szemerédi theorem for the primes via a correspondence principle. Israel J. Math., to appear.Google Scholar
  50. Tow.
    H. Towsner. An analytic approach to sparse hypergraphs: hypergraph removal. arXiv:1204.1884.
  51. TTV09.
    L. Trevisan, M. Tulsiani, and S. Vadhan. Regularity, Boosting, and Efficiently Simulating Every High-entropy Distribution. In: 24th Annual IEEE Conference on Computational Complexity, IEEE Computer Society, 2009, pp. 126–136.Google Scholar
  52. Zh14.
    Y. Zhao. An arithmetic transference proof of a relative Szemerédi theorem. Math. Proc. Cambridge Philos. Soc. 156 (2014), 255–261.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Mathematical InstituteOxfordUK
  2. 2.Department of MathematicsMITCambridgeUSA

Personalised recommendations