Geometric and Functional Analysis

, Volume 24, Issue 5, pp 1377–1405 | Cite as

Topological properties of positively curved manifolds with symmetry

Article

Abstract

Manifolds admitting positive sectional curvature are conjectured to have rigid homotopical structure and, in particular, comparatively small Euler charateristics. In this article, we obtain upper bounds for the Euler characteristic of a positively curved Riemannian manifold that admits a large isometric torus action. We apply our results to prove obstructions to symmetric spaces, products of manifolds, and connected sums admitting positively curved metrics with symmetry.

Mathematics Subject Classification

Primary 53C20 Secondary 57N65 

Keywords and phrases

Positive curvature Symmetry Euler characteristic Betti numbers Hopf conjecture Elliptic genus Symmetric spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMA09.
    M. Amann. Positive Quaternionic Kähler Manifolds. PhD thesis, WWU Münster, (2009).Google Scholar
  2. BER66.
    Berger M.: Trois remarques sur les variétés riemanniennes à à courbure positive. C. R. Math. Acad. Sci. Paris, 263, A76–A78 (1966)Google Scholar
  3. BRE72.
    G. Bredon. Introduction to Compact Transformation Groups. Academic Press (1972).Google Scholar
  4. CHE73.
    Cheeger J.: Some examples of manifolds of nonnegative curvature. J. Differential Geom., 8, 623–628 (1973)MathSciNetMATHGoogle Scholar
  5. CON57.
    Conner P.: On the action of the circle group. Michigan Math. J., 4, 241–247 (1957)MathSciNetCrossRefGoogle Scholar
  6. DEA11.
    Dearricott O.: A 7-manifold with positive curvature. Duke Math. J., 2(158), 307–346 (2011)MathSciNetGoogle Scholar
  7. FRA61.
    Frankel T.: Manifolds with positive curvature. Pacific J. Math., 11, 165–174 (1961)MathSciNetCrossRefMATHGoogle Scholar
  8. GRO81.
    Gromov M.: Curvature, diameter and Betti numbers. Comment. Math. Helv., 1(56), 179–195 (1981)CrossRefGoogle Scholar
  9. GRO02.
    K. Grove. Geometry of, and via, symmetries. In Conformal, Riemannian and Lagrangian geometry (Knoxville, TN, 2000), vol. 27 of Univ. Lecture Ser. Amer. Math. Soc., Providence, RI (2002), pp. 31–53Google Scholar
  10. GRO09.
    .K. Grove. Developments around positive sectional curvature. Surveys in Differential Geometry, Vol. XIII. Geometry, analysis, and algebraic geometry: Forty years of the Journal of Differential Geometry (2009), pp. 117–133.Google Scholar
  11. GS94.
    Grove K., Searle C.: Positively curved manifolds with maximal symmetry rank. J. Pure Appl. Algebra, 1(91), 137–142 (1994)MathSciNetCrossRefGoogle Scholar
  12. GVZ11.
    Grove K., Verdiani L., Ziller W.: An exotic \({T_{1}\mathbb{S}^{4}}\) with positive curvature. Geom. Funct. Anal., 3(21), 499–524 (2011)MathSciNetCrossRefGoogle Scholar
  13. KEN13.
    Kennard L.: On the Hopf conjecture with symmetry. Geom. Topol., 17, 563–593 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. KEN00.
    L. Kennard. Positively curved Riemannian metrics with logarithmic symmetry rank bounds. Comment. Math. Helv., (to appear), arXiv:1209.4627v1.
  15. PET00.
    P. Petersen and F. Wilhelm. An exotic sphere with positive curvature. preprint, arXiv:0805.0812v3.
  16. WEI00.
    N. Weisskopf. Positive curvature and the elliptic genus. preprint, arXiv:1305.5175v1.
  17. WIL03.
    Wilking B.: Torus actions on manifolds of positive sectional curvature. Acta Math., 2(191), 259–297 (2003)MathSciNetCrossRefGoogle Scholar
  18. WI07.
    B. Wilking. Nonnegatively and Positively Curved Manifolds. Surveys in Differential Geometry, Vol. XI. Metric and Comparison Geometry, (2007) pp. 25–62.Google Scholar
  19. ZIL07.
    W. Ziller. Examples of Riemannian manifolds with non-negative sectional curvature. Surveys in Differential Geometry, Vol. XI. Metric and Comparison Geometry (2007), pp. 63–102.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Fakultät für MathematikInstitut für Algebra und Geometrie, Karlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations