Geometric and Functional Analysis

, Volume 24, Issue 4, pp 1316–1335 | Cite as

Non-Veech surfaces in \({\mathcal{H}^{\rm hyp}(4)}\) are generic

  • Duc-Manh NguyenEmail author
  • Alex Wright


We show that every surface in the component \({\mathcal{H}^{\rm hyp}(4)}\), that is the moduli space of pairs \({(M,\omega)}\) where M is a genus three hyperelliptic Riemann surface and \({\omega}\) is an Abelian differential having a single zero on M, is either a Veech surface or a generic surface, i.e. its \({{\rm GL}^{+}(2,\mathbb{R})}\)-orbit is either a closed or a dense subset of \({\mathcal{H}^{\rm hyp}(4)}\). The proof develops new techniques applicable in general to the problem of classifying orbit closures, especially in low genus. Combined with work of Matheus and the second author, a corollary is that there are at most finitely many non-arithmetic Teichmüller curves (closed orbits of surfaces not covering the torus) in \({\mathcal{H}^{\rm hyp}(4)}\).


Modulus Space Orbit Closure Horizontal Cylinder Translation Surface Saddle Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANW13.
    D. Aulicino, D.-M. Nguyen and A. Wright. Classification of higher rank orbit closure in \({\mathcal{H}^{\rm odd}(4)}\). (to appear in) Journal of the European Mathematical Society (JEMS). arXiv:1308.5879 (2013)
  2. AEM12.
    A. Avila, A. Eskin and M. Möller. Symplectic and Isometric \({{\rm {\rm SL}}(2,\mathbb{R})}\)-invariant subbundle of the Hodge bundle. arXiv:1209.2854 (2012)
  3. BM12.
    Bainbridge M., Möller M.: The Deligne-Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3. Acta Mathematica. 1(208), 1–92 (2012)CrossRefGoogle Scholar
  4. Cal04.
    Calta K.: Veech surfaces and complete periodicity in genus two. Journal of the American Mathematical Society 4(17), 871–908 (2004)CrossRefMathSciNetGoogle Scholar
  5. EM01.
    Eskin A., Masur H.: Asymptotic formulas on flat surfaces. Ergodic Theory and Dynamical Systems. 21, 443–478 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. EM13.
    A. Eskin and M. Mirzakhani. Invariant and stationary measures for the \({{\rm SL}(2,\mathbb{R})}\) action on moduli space. arXiv:1302.3320 (2013)
  7. EMM13.
    A. Eskin, M. Mirzakhani and A. Mohammadi. Isolation, Equidistribution, and Orbit Closures for the \({{\rm SL}(2,\mathbb{R})}\) action on Moduli space. arXiv:1305.3015 (2013)
  8. Fil13a.
    S. Filip. Semisimplicity and Rigidity of the Kontsevich–Zorich cocycle. arXiv:1307.7314 (2013)
  9. Fil13b.
    S. Filip. Splitting mixed Hodge structures over affine invariant manifolds. arXiv:1311.2350 (2013)
  10. GJ00.
    Gutkin E., Judge C.: Affine mappings of translation surfaces: geometry and arithmetic. Duke Mathematical Journal. 103(2), 191–213 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. HL06.
    Hubert P., Lelièvre S.: Prime arithmetic Teichmüller discs in \({\mathcal{H}(2)}\). Israel Journal of Mathematics. 151, 281–321 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. HLM09.
    Hubert P., Lanneau , Möller M.: The Arnoux–Yoccoz Teichmüller disc. Geometric and Functional Analysis. 6(18), 1988–2016 (2009)CrossRefGoogle Scholar
  13. HLM12.
    Hubert P., Lanneau E., Möller M.: Completely periodic directions and orbit closure of many pseudo-Anosov Teichmüller discs in \({\mathcal{Q}(1,1,1,1)}\). Mathematische Annalen 1(353), 1–35 (2012)CrossRefGoogle Scholar
  14. KZ03.
    Kontsevich M., Zorich A.: Connected components of the moduli spaces of Abelian differentials. Inventiones mathematicae 153(3), 631–678 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. Lin13.
    K. Lindsey. Counting invariant components of hyperelliptic translation surfaces. arXiv:1302.3282 (2013)
  16. LN11.
    Lanneau E., Nguyen D.-M.:Teichmüller curves generated by Weierstrass Prym eigenforms in genus three and genus four. Journal of Topology 2(7), 475–522 (2014)CrossRefMathSciNetGoogle Scholar
  17. Mas82.
    Masur H.: Interval exchange transformations and measured foliations. Annals of Mathematics (2) 1(115), 169–200 (1982)CrossRefMathSciNetGoogle Scholar
  18. Mas86.
    H Masur.:Closed trajectories for quadratic differentials with an application to billiards. Duke Mathematical Journal 2(53), 307–314 (1986)zbMATHGoogle Scholar
  19. MT02.
    H. Masur, S. Tabachnikov. Rational billards and flat structures. In: B. Hasselblatt and A. Katok (ed): Handbook of Dynamical Systems, Vol. 1A, Elsevier Science B.V., 1015–1089 (2002)Google Scholar
  20. MMY13.
    C. Matheus, M. Möller and J.C. Yoccoz. A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces. arXiv:1305.2033 (2013)
  21. MW13.
    C. Matheus and A. Wright. Hodge-Teichmüller planes and finiteness results for Teichmüller curves. (to appear in) Duke Mathematical Journal, arXiv:1308.0832 (2013)
  22. McM03.
    McMullen C.T.: Billiards and Teichüller curves on Hilbert modular surfaces. Journal of the American Mathematical Society 4(16), 857–885 (2003)CrossRefMathSciNetGoogle Scholar
  23. McM05.
    McMullen C.T.: Teichmüller curves in genus two: Discriminant and spin. Mathematische Annalen 333, 87–130 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  24. McM06a.
    McMullen C.T.: Prym varieties and Teichmüller curves.. Duke Mathematical Journal. 3(133), 569–590 (2006)CrossRefMathSciNetGoogle Scholar
  25. McM07.
    McMullen C.T.: Dynamics of \({{\rm SL}_2(\mathbb{R})}\) over moduli space in genus two. Annals of Mathematics 2(. (2165), 397–456 (2007)CrossRefMathSciNetGoogle Scholar
  26. McM06b.
    McMullen C.T.: Teichmüller curves in genus two: torsion divisors and ratios of sines. Inventiones mathematicae. 3(165), 651–672 (2006)CrossRefMathSciNetGoogle Scholar
  27. Mol08.
    Möller M.: Finiteness results for Teichmüller curves. Annales de l’institut Fourier (Grenoble). 58, 63–83 (2008)CrossRefzbMATHGoogle Scholar
  28. Mol06a.
    Möller M.: Variations of Hodge structures of a Teichmüller curve. Journal of the American Mathematical Society. 2(19), 327–344 (2006)CrossRefGoogle Scholar
  29. Mol06b.
    Möller M.: Periodic points on Veech surfaces and the Mordell–Weil group over a Teichmüller curve.. Inventiones mathematicae. 3(165), 633–649 (2006)CrossRefGoogle Scholar
  30. Ngu11.
    D.-M. Nguyen. Parallelogram decompositions and generic surfaces in \({\mathcal{H}^{\rm hyp}(4)}\). Geometry and Topology, 15 (2011), 1707–1747Google Scholar
  31. SW04.
    Smillie J., Weiss B.: Minimal sets for flows on moduli space. Israel Journal of Mathematics 142, 149–160 (2004)CrossRefMathSciNetGoogle Scholar
  32. Vee82.
    Veech W.A.: Gauss measures for transformations on the space of interval exchange maps. Annals of Mathematics 2(. (1115), 201–242 (1982)CrossRefMathSciNetGoogle Scholar
  33. Vee86.
    Veech W.A. (1986) Teichmüller geodesic flow. Annals of Mathematics. 124: 441–530Google Scholar
  34. Vee89.
    Veech W.A.: Teichmüller curves in modular space, Eisenstein series, and an application to triangular billiards. Inventiones mathematicae. 3(97), 553–583 (1989)CrossRefMathSciNetGoogle Scholar
  35. Wri12.
    A. Wright. The field of definition of affine invariant submanifolds of the moduli space of Abelian differentials. arXiv:1210.4806 (2012)
  36. Wri13a.
    A. Wright. Cylinder deformations in orbit closures of translation surfaces. arXiv:1302.4108 (2013)
  37. Wri13b.
    A. Wright. Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-Möller curves. Geometric and Functional Analysis, (2)21 (2013), 776–809Google Scholar
  38. Zor06.
    A. Zorich. Flat surfaces.Frontiers in Number Theory, Physics, and Geometry, 437–583. Springer, Berlin (2006)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.IMB Bordeaux-Université de BordeauxTalence CedexFrance
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations