Advertisement

Geometric and Functional Analysis

, Volume 23, Issue 2, pp 570–579 | Cite as

Quasirandom permutations are characterized by 4-point densities

Open Access
Article

Abstract

For permutations \({\pi}\) and \({\tau}\) of lengths \({|\pi|\le|\tau|}\) , let \({t(\pi,\tau)}\) be the probability that the restriction of \({\tau}\) to a random \({|\pi|}\) -point set is (order) isomorphic to \({\pi}\) . We show that every sequence \({\{\tau_j\}}\) of permutations such that \({|\tau_j|\to\infty}\) and \({t(\pi,\tau_j)\to 1/4!}\) for every 4-point permutation \({\pi}\) is quasirandom (that is, \({t(\pi,\tau_j)\to 1/|\pi|!}\) for every \({\pi}\)). This answers a question posed by Graham.

Keywords and phrases

Permutations Quasirandomness Permutation limits Subpermutation density 

References

  1. CG90.
    Chung F.R.K., Graham R.L.: Quasi-random hypergraphs.. Random Structure and Algorithms, 1, 105–124 (1990)MathSciNetMATHCrossRefGoogle Scholar
  2. CG91a.
    Chung F.R.K., Graham R.L.: Quasi-random tournaments.. Journal of Graph Theory, 15, 173–198 (1991)MathSciNetMATHCrossRefGoogle Scholar
  3. CG91b.
    Chung F.R.K., Graham R.L.: Quasi-random set systems.. Journal of the American Mathematical Society, 4, 151–196 (1991)MathSciNetMATHCrossRefGoogle Scholar
  4. CG92.
    Chung F.R.K., Graham R.L.: Quasi-random subsets of \({\mathbb{Z}_n}\) . Journal of Combinatorial Theory, Series A, 61, 64–86 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. CGW89.
    Chung F.R.K., Graham R.L., Wilson R.M.: Quasi-random graphs. Combinatorica, 9, 345–362 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. Coo04.
    Cooper J.N.: Quasirandom permutations. Journal of Combinatorial Theory, Series A, 106, 123–143 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. CP08.
    J.N. Cooper and A. Petrarca. Symmetric and asymptotically symmetric permutations, (2008) arXiv:0801.4181Google Scholar
  8. Gow06.
    Gowers W.T.: Quasirandomness, counting and regularity for 3-uniform hypergraphs. Combinatorics, Probability and Computing, 15, 143–184 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. Gow07.
    Gowers W.T.: Hypergraph regularity and the multidimensional Szemerédi theorem. Annals of Mathematics 166(2), 897–946 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. Gow08.
    Gowers W.T.: Quasirandom groups. Combinatorics, Probability and Computing, 17, 363–387 (2008)MathSciNetMATHGoogle Scholar
  11. HT89.
    Haviland J., Thomason A.G.: Pseudo-random hypergraphs.. Discrete Mathematics, 75, 255–278 (1989)MathSciNetMATHCrossRefGoogle Scholar
  12. HKMRS12.
    Hoppen C., Kohayakawa Y., Moreira C.G., Ráth B., Sampaio R.M.: Limits of permutation sequences. Journal of Combinatorial Theory, Series B, 103, 93–113 (2012)CrossRefGoogle Scholar
  13. HKMS10.
    C. Hoppen, Y. Kohayakawa, C.G. Moreira, and R.M. Sampaio. Limits of permutation sequences through permutation regularity, (2010) arXiv:1106.1663Google Scholar
  14. HKMS11.
    Hoppen C., Kohayakawa Y., Moreira C.G., Sampaio R.M.: Testing permutation properties through subpermutations.. Theoretical Computer Science, 412, 3555–3567 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. KRS02.
    Kohayakawa Y., Rödl V., Skokan J.: Hypergraphs, quasi-randomness, and conditions for regularity.. Journal of Combinatorial Theory, Series A, 97, 307–352 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. LS08.
    Lovász L., Sós V.: Generalized quasirandom graphs.Journal of Combinatorial Theory, Series B, 98, 146–163 (2008)MATHCrossRefGoogle Scholar
  17. LS06.
    Lovász L., Szegedy B.: Limits of dense graph sequences.. Journal of Combinatorial Theory, Series B, 96, 933–957 (2006)MathSciNetMATHCrossRefGoogle Scholar
  18. LS11.
    Lovász L., Szegedy B.: Finitely forcible graphons.. Journal of Combinatorial Theory, Series B, 101, 269–301 (2011)MathSciNetMATHCrossRefGoogle Scholar
  19. MMW02.
    McKay B.D., Morse J., Wilf H.S.: The distributions of the entries of Young tableaux.. Journal of Combinatorial Theory, Series A, 97, 117–128 (2002)MathSciNetMATHCrossRefGoogle Scholar
  20. Raz07.
    Razborov A.: Flag algebras. Journal of Symbolic Logic, 72, 1239–1282 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. Rod86.
    Rödl V.: On the universality of graphs with uniformly distributed edges. Discrete Mathematics, 59, 125–134 (1986)MathSciNetMATHCrossRefGoogle Scholar
  22. Tho87.
    Thomason A.: Pseudo-random graphs. Annals of Discrete Mathematics, 33, 307–331 (1987)MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Mathematics Institute, DIMAP and Department of Computer ScienceUniversity of WarwickCoventryUK
  2. 2.Faculty of Mathematics and Physics, Computer Science InstituteCharles UniversityPragueCzech Republic
  3. 3.Mathematics Institute and DIMAPUniversity of WarwickCoventryUK

Personalised recommendations