Advertisement

Geometric and Functional Analysis

, Volume 23, Issue 1, pp 149–294 | Cite as

On Some Finiteness Questions for Algebraic Stacks

  • Vladimir Drinfeld
  • Dennis Gaitsgory
Article

Abstract

We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous.

Keywords

Natural Transformation Full Subcategory Monoidal Category Left Adjoint Projection Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AG12.
    D. Arinkin and D. Gaitsgory. Singular support of coherent sheaves, and the geometric Langlands conjecture. arXiv:1201.6343 (2012).Google Scholar
  2. BV08.
    Beilinson A., Vologodsky V.: A DG guide to Voevodksy’s motives. Geometric and Functional Analysis 17(6), 1709–1787 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. BFN10.
    Ben-Zvi D., Francis J., Nadler D.: Integral transforms and Drinfeld centers in derived algebraic geometry. Journal of the American Mathematical Society 23(4), 909–966 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Fal03.
    Faltings G.: Finiteness of coherent cohomology for proper fppf stacks. Journal of Algebraic Geometry 12(2), 357–366 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. FG12.
    Francis J., Gaitsgory D.: Chiral Koszul duality. Selecta Mathematica (New Series) 18(1), 27–87 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. GL:DG.
    Notes on Geometric Langlands. Generalities on DG categories. Available at http://www.math.harvard.edu/gaitsgde/GL/.
  7. GL:Stacks.
    Notes on Geometric Langlands. Stacks. Available at http://www.math.harvard.edu/gaitsgde/GL/.
  8. GL:QCoh.
    Notes on Geometric Langlands. Quasi-coherent sheaves on stacks. Available at http://www.math.harvard.edu/gaitsgde/GL/.
  9. Gai11.
    D. Gaitsgory. Ind-coherent sheaves. arXiv:1105.4857.Google Scholar
  10. GR12.
    D. Gaitsgory and N. Rozenblyum. Crystals and D-modules. arXiv:1111. 2087.Google Scholar
  11. GR12.
    D. Gaitsgory and N. Rozenblyum, A study in derived algebraic geometry. In preparation.Google Scholar
  12. LM00.
    G. Laumon and L. Moret-Bailly. Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete (3 Folge, A Series of Modern Surveys in Mathematics), 39. Springer-Verlag, Berlin (2000).Google Scholar
  13. Lur09.
    J. Lurie. Higher Topos Theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton (2009).Google Scholar
  14. Lur11.
    J. Lurie. Higher Algebra. Available at http://www.math.harvard.edu/~lurie/.
  15. Lur11.
    J. Lurie. DAG-VII: Spectral Schemes. Available at http://www.math.harvard.edu/~lurie/.
  16. Nee92.
    A. Neeman. The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4) (5)25 (1992), 547–566.Google Scholar
  17. Nee11.
    Neeman A.: Non-left-complete derived categories. Mathematical Research Letters 18(5), 827–832 (2011)MathSciNetzbMATHGoogle Scholar
  18. Ols05.
    Olsson M.: On proper coverings of Artin stacks. Advances in Mathematics 198(1), 93–106 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Ray70.
    M. Raynaud. Faisceaux amples sur les schémas en groupes et les espaces homogènes. Lecture Notes in Mathematics, 119. Springer-Verlag, Berlin-New York (1970).Google Scholar
  20. SGA2.
    Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux. Augmenté d’un exposé de Michèle Raynaud. Documents Mathématiques 4. Société Mathématique de France, Paris, 2005. arXiv:math/0511279.Google Scholar
  21. TT90.
    R. Thomason and T. Trobaugh, Higher algebraic K -theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III, 247435. Progr. Math., 88 (1990).Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations