Geometric and Functional Analysis

, Volume 21, Issue 6, pp 1358–1374 | Cite as

A New Approach to Investigation of Carnot–Carathéodory Geometry

Article

Abstract

We develop a new approach to studying the geometry of Carnot–Carathéodory spaces under minimal assumptions on the smoothness of basis vector fields. We obtain quantitative comparison estimates for the local geometries of two different local Carnot groups, as well as of a local Carnot group and the original space. As corollaries, we deduce some results that are well-known and basic for the “smooth” case: the generalized triangle inequality for d, the local approximation theorem for the quasimetric d, the Rashevskiǐ–Chow theorem, the ball-box theorem, and so on.

Keywords and phrases

Carnot manifold local Carnot group local geometry minimal smoothness 

2010 Mathematics Subject Classification

Primary 53C17 51F99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.
    A. Bellaïche, Tangent space in sub-Riemannian geometry, Sub-Riemannian Geometry, Birkhäuser, Basel (1996), 1–78.Google Scholar
  2. BoLU.
    A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer, 2007.Google Scholar
  3. BrBP.
    M. Bramanti, L. Brandolini, M. Pedroni, Basic properties of nonsmooth Hörmander’s vector fields and Poincaré’s inequality, preprint (2009); \({\tt arXiv:0809.2872v2 [math.AP]}\) Google Scholar
  4. BuBI.
    Burago D.Yu, Burago Yu.D., Ivanov S.V.: A Course in Metric Geometry, Graduate Studies in Mathematics 33. American Mathematical Society, Providence, RI (2001)Google Scholar
  5. C.
    Chow W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordung. Math. Ann. 117, 98–105 (1939)MathSciNetCrossRefGoogle Scholar
  6. CiS.
    Citti G., Sarti A.: A cortical based model of perceptual completion in the rototranslation space. Lecture Notes of Seminario Interdisciplinare di Matematica 3, 145–161 (2004)Google Scholar
  7. FS.
    G.B. Folland, E.M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.Google Scholar
  8. G.
    M. Gromov, Carnot–Carathéodory spaces seen from within, Sub-Riemannian Geometry, Birkhäuser, Basel (1996), 79–318.Google Scholar
  9. HP.
    Hladky R.K., Pauls S.D.: Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model. J. Math. Imaging Vision 36(1), 1–27 (2010)MathSciNetCrossRefGoogle Scholar
  10. K.
    Karmanova M.B.: An example of a Carnot manifold with C1-smooth basis vector fields. Izvestiya Vuzov. Mathematics 5, 84–87 (2011)Google Scholar
  11. KV.
    M. Karmanova, S. Vodopyanov, Geometry of Carnot–Carathéodory spaces, differentiability, area and coarea formulas, Analysis and Mathematical Physics, Trends in Mathematics, Birkhäuser, Basel (2009), 233–335.Google Scholar
  12. M.
    Mitchell J.: On Carnot–Carathéodory metrics. J. Differential Geometry 21, 35–45 (1985)MATHGoogle Scholar
  13. Mo.
    R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Providence, AMS, 2002.Google Scholar
  14. MonM.
    A. Montanari, D. Morbidelli, Nonsmooth Hörmander vector fields and their control balls, preprint (2008); \({\tt arXiv:0812.2369v1 [math.MG]}\) Google Scholar
  15. NSW.
    Nagel A., Stein E.M., Wainger S.: Balls and metrics defined by vector fields I: Basic properties. Acta Math. 155, 103–147 (1985)MathSciNetMATHCrossRefGoogle Scholar
  16. P.
    J. Petitot, Neurogéométrie de la vision, Modèles mathématiques et physiques des architectures fonctionelles, Les Éditions de l’École Polytechnique, 2008.Google Scholar
  17. Po.
    M.M. Postnikov, Lectures in Geometry. Semester V: Lie Groups and Lie Algebras. Moscow, “Nauka”, 1982.Google Scholar
  18. R.
    Rashevskǐ P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta. Ser. Phys. Math. 2, 83–94 (1938)Google Scholar
  19. S1.
    Selivanova S.V.: The tangent cone to a regular quasimetric Carnot–Carathéodory space. Dokl. AN 425(5), 595–599 (2009)MathSciNetGoogle Scholar
  20. S2.
    Selivanova S.V.: Tangent cone to a quasimetric space with dilations. Sib. Mat. J. 51(5), 388–403 (2010)MathSciNetGoogle Scholar
  21. VG.
    A.M. Vershik, V.Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems, Dynamical Systems, VII. Encycl. Math. Sci., vol. 16 (1994), 1–81; (English Translation from: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 16, Moscow, VINITI (1987), 7–85).Google Scholar
  22. VK.
    Vodopyanov S.K., Karmanova M.B.: Sub-Riemannian geometry under minimal smoothness of basis vector fields, Dokl. AN 422(5), 583–588 (2008)MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics of SBNovosibirskRussia

Personalised recommendations