Gauged Floer Theory Of Toric Moment Fibers

Article

Abstract

We investigate the small area limit of the gauged Lagrangian Floer cohomology of Frauenfelder [Fr1]. The resulting cohomology theory, which we call quasimap Floer cohomology, is an obstruction to displaceability of Lagrangians in the symplectic quotient. We use the theory to reproduce the results of Fukaya–Oh–Ohta–Ono [FuOOO3,1] and Cho–Oh [CO] on non-displaceability of moment fibers of not-necessarily-Fano toric varieties and extend their results to toric orbifolds, without using virtual fundamental chains. Finally, we describe a conjectural relationship with Floer cohomology in the quotient.

Keywords and phrases

Hamiltonian displaceability Floer homology toric varieties 

2010 Mathematics Subject Classification

53D40 53D20 

References

  1. A1.
    M. Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, arXiv.org:0812.4781Google Scholar
  2. A2.
    M. Abouzaid, A topological model for the Fukaya categories of plumbings, arXiv.org:0904.1474Google Scholar
  3. Al.
    P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz Morphism and Two Comparison Homomorphisms in Floer Homology, Int. Math. Res. Not. IMRN (4) (2008).Google Scholar
  4. Als.
    G. Alston, Lagrangian Floer homology of the Clifford torus and real projective space in odd dimensions, 2009; arXiv.org:0902.0197Google Scholar
  5. AlsA.
    G. Alston, L. Amorim, Floer cohomology of torus fibers and real Lagrangians in Fano toric manifolds, arXiv:1003.3651Google Scholar
  6. Au.
    D. Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, in “Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry”, Surv. Differ. Geom. 13, Int. Press, Somerville, MA (2009), 1–47.Google Scholar
  7. AuKO.
    Auroux D., Katzarkov L., Orlov D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. Ann. of Math. (2) 167(3), 867–943 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. BC.
    P. Biran, O. Cornea, Quantum structures for Lagrangian submanifolds, arXiv:0708.4221Google Scholar
  9. BoV.
    J.M. Boardman, R.M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Springer Lect. Notes in Math. 347 (1973).Google Scholar
  10. Bu.
    L. Buhovsky, The Maslov class of Lagrangian tori and quantum products in Floer cohomology, arXiv:math/0608063Google Scholar
  11. C.
    Cho C.-H.: Products of Floer cohomology of torus fibers in toric Fano manifolds. Comm. Math. Phys. 260(3), 613–640 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. CO.
    Cho C.-H., Oh Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10(4), 773–814 (2006)MathSciNetMATHGoogle Scholar
  13. CiGMS.
    Cieliebak K., Rita Gaio A., Mundeti Riera I., Salamon D.A.: The symplectic vortex equations and invariants of Hamiltonian group actions. J. Symplectic Geom. 1(3), 543–645 (2002)MathSciNetMATHGoogle Scholar
  14. EP.
    Entov M., Polterovich L.: Rigid subsets of symplectic manifolds. Compos. Math. 145(3), 773–826 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. F.
    Floer A.: Morse theory for Lagrangian intersections. J. Differential Geom. 28(3), 513–547 (1988)MathSciNetMATHGoogle Scholar
  16. FHS.
    Floer A., Hofer H., Salamon D.: Transversality in elliptic Morse theory for the symplectic action. Duke Math. J. 80(1), 251–292 (1995)MathSciNetCrossRefMATHGoogle Scholar
  17. Fr1.
    U. Frauenfelder, Floer homology of symplectic quotients and the Arnold– Givental conjecture, PhD Thesis, ETH Zurich, 2003.Google Scholar
  18. Fr2.
    Frauenfelder U.: The Arnold–Givental conjecture and moment Floer homology. Int. Math. Res. Not. 42, 2179–2269 (2004)MathSciNetCrossRefGoogle Scholar
  19. FuOOO1.
    K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory on compact toric manifolds II : Bulk deformations (2008), arXiv.org:0810.5654Google Scholar
  20. FuOOO2.
    K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction, AMS/IP Studies in Advanced Mathematics 46, American Mathematical Society, Providence, RI (2009).Google Scholar
  21. FuOOO3.
    Fukaya K., Oh Y.-G., Ohta H., Ono K.: Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151(1), 23–174 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. GS.
    Rita Pires Gaio A., Salamon D.A.: Gromov–Witten invariants of symplectic quotients and adiabatic limits. J. Symplectic Geom. 3(1), 55–159 (2005)MathSciNetGoogle Scholar
  23. Gi.
    Givental A.B.: Equivariant Gromov–Witten invariants. Internat. Math. Res. Notices 13, 613–663 (1996)MathSciNetCrossRefGoogle Scholar
  24. GoW1.
    E. Gonzalez, C. Woodward, Area-dependence in gauged Gromov–Witten theory, arXiv:0811.3358Google Scholar
  25. GoW2.
    E. Gonzalez, C. Woodward, Gauged Gromov–Witten theory for small spheres, arXiv:0907.3869Google Scholar
  26. GoW3.
    E. Gonzalez, C. Woodward, Deformations of symplectic vortices, Ann. of Global Anal. and Geom., to appear; arXiv:0811.3711Google Scholar
  27. GuS.
    V.W. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, Berlin, 1999; (with an appendix containing two reprints by H. Cartan [MR 13,107e; MR 13,107f].Google Scholar
  28. HHP.
    K. Hori, M. Herbst, D. Page, Phases of N=2 theories in 1 + 1 dimensions with boundary, arXiv:0803.2045v1Google Scholar
  29. HV.
    K. Hori, C. Vafa, Mirror symmetry, hep-th/0002222Google Scholar
  30. Hö.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, III. Springer-Verlag, Berlin, 1994. (Pseudo-differential operators, corrected reprint of the 1985 original).Google Scholar
  31. KM.
    Katić J., Milinković D.: Coherent orientation of mixed moduli spaces in Morse-Floer theory. Bull. Braz. Math. Soc. (N.S.) 40(2), 253–300 (2009)MathSciNetMATHGoogle Scholar
  32. Ki.
    Kirwan F.C.: Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes 31. Princeton Univ. Press, Princeton (1984)Google Scholar
  33. KoS.
    M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, in “Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ (2001), 203–263.Google Scholar
  34. LK.
    E. Lerman, Y. Karshon, Non-compact toric manifolds, arXiv:0907.2891Google Scholar
  35. LT.
    Lerman E., Tolman S.: Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Amer. Math. Soc. 349(10), 4201–4230 (1997)MathSciNetCrossRefMATHGoogle Scholar
  36. LoM.
    Lockhart R.B., McOwen R.C.: Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12(3), 409–447 (1985)MathSciNetMATHGoogle Scholar
  37. M.
    S. Ma’u, Gluing pseudoholomorphic quilted disks, arxiv:0909.339Google Scholar
  38. MW.
    Ma’u S., Woodward C.: Geometric realizations of the multiplihedron and its complexification. Compos. Math. 146, 1002–1028 (2010)MathSciNetCrossRefMATHGoogle Scholar
  39. MWW.
    S. Mau, K. Wehrheim, C.T. Woodward, A-functors for Lagrangian correspondences, in preparation.Google Scholar
  40. Mc.
    D. McDuff, Displacing Lagrangian toric fibers via probes, arXiv:0904.1686Google Scholar
  41. McS.
    D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society, Providence, RI (2004).Google Scholar
  42. O1.
    Oh Y.-G.: Floer cohomology of Lagrangian intersections and pseudoholomorphic disks. I, Comm. Pure Appl. Math. 46(7), 949–993 (1993)CrossRefMATHGoogle Scholar
  43. O2.
    Oh Y.-G.: Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings. Internat. Math. Res. Notices 7, 305–346 (1996)CrossRefGoogle Scholar
  44. PSW.
    Pandharipande R., Solomon J., Walcher J.: Disk enumeration on the quintic 3-fold. J. Amer. Math. Soc. 21(4), 1169–1209 (2008)MathSciNetCrossRefMATHGoogle Scholar
  45. PiSS.
    S. Piunikhin, D. Salamon, M. Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, in “Contact and Symplectic Geometry (Cambridge, 1994)”, Publ. Newton Inst. 8, Cambridge Univ. Press, Cambridge (1996), 171–200.Google Scholar
  46. Po.
    M. Poźniak, Floer homology, Novikov rings and clean intersections, in “Northern California Symplectic Geometry Seminar”, Amer. Math. Soc. Transl. Ser. (2) 196, Amer. Math. Soc., Providence, RI (1999), 119–181.Google Scholar
  47. R.
    Royden H.L.: Real Analysis. The Macmillan Co., New York (1963)MATHGoogle Scholar
  48. S.
    Schwarz M.: Morse Homology, Progress in Math. 111. Birkhäuser Verlag, Basel (1993)CrossRefGoogle Scholar
  49. Se1.
    P. Seidel, Fukaya categories and deformations, in “Proceedings of the International Congress of Mathematicians II (Beijing, 2002)”, Higher Ed. Press, Beijing (2002), 351–360.Google Scholar
  50. Se2.
    P. Seidel, Fukaya Categories and Picard–Lefschetz Theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.Google Scholar
  51. Se3.
    P. Seidel, Homological mirror symmetry for the genus two curve, arXiv:0812.1171Google Scholar
  52. Se4.
    Seidel P.: Suspending Lefschetz fibrations, with an application to mirror symmetry. Comm. Math. Phys. 297, 515–528 (2010)MathSciNetCrossRefMATHGoogle Scholar
  53. Se5.
    Seidel P.: A-subalgebras and natural transformations, Homology. Homotopy Appl. 10(2), 83–114 (2008)MathSciNetMATHGoogle Scholar
  54. St.
    J. Stasheff, H-Spaces from a Homotopy Point of View, Springer Lect. Notes in Math. 161 (1970).Google Scholar
  55. W.
    J. Wehrheim, Vortex invariants and toric manifolds, arXiv:0812.0299Google Scholar
  56. WeW1.
    Wehrheim K., Woodward C.: Functoriality for Lagrangian correspondences in Floer theory. Quantum Topology 1, 129–170 (2010)MathSciNetCrossRefMATHGoogle Scholar
  57. WeW2.
    K. Wehrheim, C. Woodward, Pseudoholomorphic quilts, arXiv:0905.1369Google Scholar
  58. WeW3.
    K. Wehrheim, C. Woodward, Orientations for pseudoholomorphic quilts, preprint (2009).Google Scholar
  59. Wi.
    Witten E.: Phases of N =  2 theories in two dimensions. Nuclear Phys. B 403(1-2), 159–222 (1993)MathSciNetCrossRefMATHGoogle Scholar
  60. WoZ.
    C. Woodward, F. Ziltener, Functoriality for Gromov–Witten invariants under symplectic quotients, preprint (2008).Google Scholar
  61. Z.
    Ziltener F.: The invariant symplectic action and decay for vortices. J. Symplectic Geom. 7(3), 357–376 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Mathematics-Hill CenterRutgers UniversityPiscatawayUSA

Personalised recommendations