Geometric and Functional Analysis

, Volume 21, Issue 3, pp 499–524 | Cite as

An Exotic \({T_{1}\mathbb{S}^4}\) with Positive Curvature

Article

Abstract

We construct a metric with positive sectional curvature on a 7-manifold which supports an isometry group with orbits of codimension 1. It is a connection metric on the total space of an orbifold 3-sphere bundle over an orbifold 4-sphere. By a result of S. Goette, the manifold is homeomorphic but not diffeomorphic to the unit tangent bundle of the 4-sphere.

Keywords and phrases

Positive curvature connection metrics cohomogeneity one 3-Sasakian manifolds 

2010 Mathematics Subject Classification

Primary: 53C20 Secondary: 53C25 57S15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AA.
    Alekseevsy A.V., Alekseevsy D.V.: G-manifolds with one dimensional orbit space. Ad. in Sov. Math. 8, 1–31 (1992)Google Scholar
  2. AlW.
    Aloff S., Wallach N.: An infinite family of 7-manifolds admitting positively curved Riemannian structures. Bull. Amer. Math. Soc. 81, 93–97 (1975)MathSciNetMATHCrossRefGoogle Scholar
  3. BH.
    Back A., Hsiang W.Y.: Equivariant geometry and Kervaire spheres. Trans. Amer. Math. Soc. 304(1), 207–227 (1987)MathSciNetMATHCrossRefGoogle Scholar
  4. Ba.
    Bazaikin Y.V.: On a certain family of closed 13–dimensional Riemannian manifolds of positive curvature. Sib. Math. J. 37(6), 1219–1237 (1996)MathSciNetCrossRefGoogle Scholar
  5. Bé.
    Bérard Bergery L.: Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive. J. Math. pure et appl. 55, 47–68 (1976)MATHGoogle Scholar
  6. Ber.
    Berger M.: Les variétés riemanniennes homogenes normales simplement connexes a courbure strictment positive. Ann. Scuola Norm. Sup. Pisa 15, 191–240 (1961)Google Scholar
  7. BöW.
    Böhm C., Wilking B.: Manifolds with positive curvature operators are space forms. Ann. of Math. 167, 1079–1097 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. CDR.
    Chaves L.M., Derdziński A., Rigas A.: A condition for positivity of curvature. Bol. Soc. Brasil Mat. (N.S.) 23, 153–165 (1992)MathSciNetMATHCrossRefGoogle Scholar
  9. Cr.
    D. Crowley, The Classification of Highly Connected Manifolds in Dimensions 7 and 15, Thesis, Indiana University, 2001; math.GT/0203253Google Scholar
  10. CrE.
    Crowley D., Escher C.: The classification of \({\mathbb{S}^3}\) -bundles over \({\mathbb{S}^4}\) . Diff. Geom. Appl. 18, 363–380 (2003)MathSciNetMATHCrossRefGoogle Scholar
  11. D1.
    Dearricott O.: Positive sectional curvature on 3-Sasakian manifolds. Ann. Global Anal. Geom. 25, 59–72 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. D2.
    O. Dearricott, A 7-manifold with positive curvature, Duke Math. J., to appear.Google Scholar
  13. DeR.
    Derdzinski A., Rigas A.: Unflat connections in 3-sphere bundles over \({\mathbb{S}^4}\). Trans. of the AMS 265, 485–493 (1981)MathSciNetMATHCrossRefGoogle Scholar
  14. E1.
    Eschenburg J.H.: New examples of manifolds with strictly positive curvature. Inv. Math. 66, 469–480 (1982)MathSciNetMATHCrossRefGoogle Scholar
  15. E2.
    J.H. Eschenburg, Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenr. Math. Inst. Univ. Münster 32 (1984).Google Scholar
  16. EW.
    Eschenburg J.H., Wang M.: The initial value problem for cohomogeneity one Einstein metrics. J. Geom. Anal. 10, 109–137 (2000)MathSciNetMATHGoogle Scholar
  17. FR.
    Fang F., Rong X.: Positive pinching, volume and second Betti number. Geom. Funct. Anal. 9, 641–674 (1999)MathSciNetMATHCrossRefGoogle Scholar
  18. FlZ.
    Florit L., Ziller W.: Orbifold fibrations of Eschenburg spaces. Geom. Ded. 127, 159–175 (2007)MathSciNetMATHCrossRefGoogle Scholar
  19. G.
    S. Goette, Adiabetic limits of Seifert fibrations, Dedekind sums and the diffeomorphism type of certain 7-manifolds, preprint.Google Scholar
  20. Gr.
    Grove K.: Geometry of, and via, symmetries. Amer. Math. Soc. Univ. Lecture Series 27, 31–53 (2002)MathSciNetGoogle Scholar
  21. GVZ.
    K. Grove, L. Verdiani, W. Ziller, A new type of a positively curved manifolds, preprint 2008; arXiv;0809.2304Google Scholar
  22. GWZ.
    Grove K., Wilking B., Ziller W.: Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Diff. Geom. 78, 33–111 (2008)MathSciNetMATHGoogle Scholar
  23. GZ1.
    Grove K., Ziller W.: Curvature and symmetry of Milnor spheres. Ann. of Math. 152, 331–367 (2000)MathSciNetMATHCrossRefGoogle Scholar
  24. GZ2.
    Grove K., Ziller W.: Cohomogeneity one manifolds with positive Ricci curvature. Inv. Math. 149, 619–646 (2002)MathSciNetMATHCrossRefGoogle Scholar
  25. H1.
    N. Hitchin, A new family of Einstein metrics, Manifolds and Geometry (Pisa, 1993), Sympos. Math. XXXVI, Cambridge Univ. Press, Cambridge (1996), 190–222.Google Scholar
  26. H2.
    N. Hitchin, Poncelet polygons and the Painlevé equations, Proc. of TATA Institute Conference (1991)Google Scholar
  27. J.
    N. Jacobson, Basic Algebra, Freeman & Co., 1974.Google Scholar
  28. KS.
    Kitchloo N., Shankar K.: On Complexes Equivalent to S 3-bundles over S 4. Int. Math. Res. Notices 8, 381–394 (2001)MathSciNetCrossRefGoogle Scholar
  29. KZ.
    Kapovitch V., Ziller W.: Biquotients with singly generated rational cohomology. Geom. Dedicata 104, 149–160 (2004)MathSciNetMATHCrossRefGoogle Scholar
  30. Mü.
    P. Müter, Krümmungserhöhende Deformationen mittels Gruppenaktionen, PhD Thesis, Univerity of Münster, 1987.Google Scholar
  31. PW1.
    Petersen P., Wilhelm F.: Examples of Riemannian manifolds with positive curvature almost everywhere. Geom. Topol. 3, 331–367 (1999)MathSciNetMATHCrossRefGoogle Scholar
  32. PW2.
    P. Petersen, F. Wilhelm, An exotic sphere with positive sectional curvature, preprint.Google Scholar
  33. PeT.
    Petrunin A., Tuschmann W.: Diffeomorphism finiteness, positive pinching, and second homotopy. Geom. Funct. Anal. 9, 736–774 (1999)MathSciNetMATHCrossRefGoogle Scholar
  34. Pü.
    Püttmann T.: Optimal pinching constants of odd-dimensional homogeneous spaces. Invent. Math. 138, 631–684 (1999)MathSciNetMATHCrossRefGoogle Scholar
  35. T1.
    J.A. Thorpe, On the curvature tensor of a positively curved 4-manifold, Mathematical Congress, Dalhousie Univ., Halifax, N.S., Canad. Math. Congr., Montreal, Que. (1972), 156–159.Google Scholar
  36. T2.
    J.A. Thorpe, The zeros of non-negative curvature operators, J. Diff. Geom. 5, (1971), 113–125; erratum, J. Diff. Geom. 11, (1976), 315.Google Scholar
  37. To.
    Totaro B.: Cheeger manifolds and the classification of biquotients. J. Diff. Geom. 61, 397–451 (2002)MathSciNetMATHGoogle Scholar
  38. V1.
    Verdiani L.: Cohomogeneity one Riemannian manifolds of even dimension with strictly positive sectional curvature, I. Math. Z. 241, 329–339 (2002)MathSciNetMATHCrossRefGoogle Scholar
  39. V2.
    Verdiani L.: Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Diff. Geom. 68, 31–72 (2004)MathSciNetMATHGoogle Scholar
  40. VZ1.
    Verdiani L., Ziller W.: Positively curved homogeneous metrics on spheres. Math. Z. 261, 473–488 (2009)MathSciNetMATHCrossRefGoogle Scholar
  41. VZ2.
    L. Verdiani, W. Ziller, Obstructions in positive curvature, preprint.Google Scholar
  42. W.
    Wallach N.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. of Math. 96, 277–295 (1972)MathSciNetCrossRefGoogle Scholar
  43. Wi1.
    Wilking B.: The normal homogeneous space (SU(3) × SO(3))/ U(2) has positive sectional curvature. Proc. of Amer. Math. Soc. 127, 1191–1994 (1999)MathSciNetMATHCrossRefGoogle Scholar
  44. Wi2.
    B. Wilking, Nonnegatively and Positively Curved Manifolds, in “Metric and Comparison Geometry” (J. Cheeger, K. Grove, eds.), Surveys in Differential Geometry XI, International Press (2007), 25–62.Google Scholar
  45. Zi1.
    W. Ziller, Examples of manifolds with non-negative sectional curvature, in “Metric and Comparison Geometry”, (J. Cheeger, K. Grove, eds.), Surveys in Differential Geometry XI, International Press (2007), 63–102.Google Scholar
  46. Zi2.
    W. Ziller, Geometry of positively curved cohomogeneity one manifolds, in “Topology and Geometric Structures on Manifolds, in honor of Charles P. Boyer’s 65th birthday, Progress in Mathematics, Birkhäuser, (2008),Google Scholar
  47. Zo.
    Zoltek S.: Nonnegative curvature operators: some nontrivial examples. J. Diff. Geom. 14, 303–315 (1979)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Karsten Grove
    • 1
  • Luigi Verdiani
    • 2
  • Wolfgang Ziller
    • 3
  1. 1.Mathematics DepartmentUniversity of Notre DameNotre DameUSA
  2. 2.Dipartimento di Matematica ApplicataFirenzeItaly
  3. 3.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations