Advertisement

Geometric and Functional Analysis

, Volume 21, Issue 2, pp 301–318 | Cite as

Dvoretzky Type Theorems for Multivariate Polynomials and Sections of Convex Bodies

  • Vladimir L. Dol’nikov
  • Roman N. Karasev
Article

Abstract

In this paper we prove the Gromov–Milman conjecture (the Dvoretzky type theorem) for homogeneous polynomials on \({\mathbb{R}^{n}}\), and improve bounds on the number n(d, k) in the analogous conjecture for odd degrees d (this case is known as the Birch theorem) and complex polynomials.

We also consider a stronger conjecture on the homogeneous polynomial fields in the canonical bundle over real and complex Grassmannians. This conjecture is much stronger and false in general, but it is proved in the cases of d = 2 (for k’s of certain type), odd d, and the complex Grassmannian (for odd and even d and any k). Corollaries for the John ellipsoid of projections or sections of a convex body are deduced from the case d = 2 of the polynomial field conjecture.

Keywords and phrases

Dvoretzky’s theorem Ramsey type theorems multivariate polynomials 

2010 Mathematics Subject Classification

46B20 05D10 26C10 52A21 52A23 55M35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AH.
    Aron R.M., Hájek P.: Zero sets of polynomials in several variables. Archiv der Mathematik 86, 561–568 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. B1.
    Bartsch T.: On the existence of Borsuk–Ulam theorems. Topology 31, 533–543 (l1992)Google Scholar
  3. B2.
    Bartsch T.: Topological Methods for Variational Problems with Symmetries. Springer-Verlag, Berlin-Heidelberg (1993)zbMATHGoogle Scholar
  4. BCP.
    Bartsch T., Clapp M., Puppe D.: A mountain pass theorem for actions of compact Lie groups. J. Reine Angew. Math. 419, 55–66 (1991)MathSciNetzbMATHGoogle Scholar
  5. Bi.
    Birch B.J.: Homogeneous forms of odd degree in a large number of variables. Mathematika 4, 102–105 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  6. BuIT.
    D. Burago, S. Ivanov, S. Tabachnikov, Topological aspects of the Dvoretzky theorem, Journal of Topology and Analysis, to appear; http://arxiv.org/abs/0907.5041arXiv:0907.5041v1
  7. C.
    Carlsson G.: Equivariant stable homotopy and Segal’s Burnside ring conjecture. Ann. of Math. 120, 189–224 (1984)MathSciNetCrossRefGoogle Scholar
  8. ClM.
    Clapp M., Marzantowicz W.: Essential equivariant maps and Borsuk–Ulam theorems. J. London Math. Soc. 61(2), 950–960 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. D.
    A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. International Symposium on Linear spaces, Jerusalem (1961), 123–160.Google Scholar
  10. F.
    Floyd E.E.: Real valued mappings of spheres. Proc. Amer. Math. Soc. 6, 1957–1959 (1955)MathSciNetCrossRefGoogle Scholar
  11. H.
    A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.Google Scholar
  12. HsH.
    Hsiang W.C., Hsiang W.Y.: Differentiable actions of compact connected classical group I. Amer. J. Math. 89, 705–786 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Hsi.
    W.Y. Hsiang, Cohomology Theory of Topological Transformation Groups, Springer Verlag, 1975.Google Scholar
  14. J.
    F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8 (1948), 187–204.Google Scholar
  15. Jo.
    Jordan C.: Mémoire sur les équations differentielles linéaires á intégrale algébrique. J. für Math. 84, 89–215 (1878)Google Scholar
  16. KS.
    Kashin B.S., Szarek S.J.: The Knaster problem and the geometry of highdimensional cubes. Comptes Rendus Mathematique 336(11), 931–936 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Kn.
    Knaster B.: Problem 4. Colloq. Math. 30, 30–31 (1947)Google Scholar
  18. LM.
    G. Luke, A.S. Mishchenko, Vector Bundles and Their Applications, Springer Verlag, 1998.Google Scholar
  19. M1.
    Makeev V.V.: The Knaster problem and almost spherical sections. Mathematics of the USSR–Sbornik 66(2), 431–438 (1990)MathSciNetzbMATHGoogle Scholar
  20. M2.
    V.V. Makeev, Universally Inscribed and Outscribed Polytopes, Doctor of Mathematics Thesis, Saint-Petersburg State University, 2003.Google Scholar
  21. Mi1.
    Milman V.D.: A few observations on the connections between local theory and some other fields, Geometric Aspects of Functional Analysis. Springer Lecture Notes in Mathematics 1317, 283–289 (1988)MathSciNetCrossRefGoogle Scholar
  22. Mi2.
    Milman V.D.: Dvoretzky’s theorem – thirty years later. Geom. Funct. Anal. 2(4), 455–479 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  23. MilS.
    J. Milnor, J. Stasheff, Characteristic Classes, Princeton University Press, 1974.Google Scholar
  24. S.
    Schmidt E.: Zum Hilbertschen Baveise des Waringschen Theorems. Math. Ann. 77, 271–274 (1913)CrossRefGoogle Scholar
  25. V.
    A.Yu. Volovikov, On maps of Stiefel manifolds with a free \({\mathbb{Z}^{n}_{p}}\)-action in the manifold (in Russian), Uspehi Mat. Nauk 47:6(288) (1992), 205–206; English translation in Russian Math. Surveys 47:6 (1992), 235–236.Google Scholar
  26. Z.
    R. Živaljević, Topological methods, Handbook of Discrete and Computational Geometry (J.E. Goodman, J. O’Rourke, eds.), CRC, Boca Raton, 2004.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of AlgebraYaroslavl’ State UniversityYaroslavl’Russia
  2. 2.Dept. of MathematicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations