Geometric and Functional Analysis

, Volume 20, Issue 6, pp 1307–1316 | Cite as

On a Theorem Due to Birkhoff



The manifold M being closed and connected, we prove that every submanifold of T*M that is Hamiltonianly isotopic to the zero-section and that is invariant by a Tonelli flow is a graph.

Keywords and phrases

Lagrangian sub-manifolds Hamiltonian and Lagrangian dynamics weak KAM theory 

2010 Mathematics Subject Classification

37J50 70H20 53D12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B.
    Bernard P. (2008) The dynamics of pseudographs in convex Hamiltonian systems. J. Amer. Math. Soc. 21(3): 615–669MATHCrossRefMathSciNetGoogle Scholar
  2. Bi.
    Bialy M. (1989) Aubry–Mather sets and Birkhoff’s theorem for geodesic flows on the two-dimensional torus. Comm. Math. Phys. 126(1): 13–24MATHCrossRefMathSciNetGoogle Scholar
  3. BiP1.
    Bialy M., Polterovich L. (1992) Hamiltonian diffeomorphisms and Lagrangian distributions. Geom. Funct. Anal. 2: 173–210MATHCrossRefMathSciNetGoogle Scholar
  4. BiP2.
    Bialy M., Polterovich L. (1989) Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom. Invent. Math. 97(2): 291–303MATHCrossRefMathSciNetGoogle Scholar
  5. BiP3.
    Bialy M., Polterovich L. (1992) Hamiltonian systems, Lagrangian tori and Birkhoff’s theorem. Math. Ann. 292(4): 619–627MATHCrossRefMathSciNetGoogle Scholar
  6. Bir.
    Birkhoff G.D. (1920) Surface transformations and their dynamical application. Acta Math. 43: 1–119MATHCrossRefMathSciNetGoogle Scholar
  7. C.
    Chaperon M. (1991) Lois de conservation et geometrie symplectique. C. R. Acad. Sci. 312: 345–348MATHMathSciNetGoogle Scholar
  8. C1.
    Clarke F. (1983) Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Avanced Texts. John Wiley & Sons, New YorkGoogle Scholar
  9. CoIPP.
    Contreras G., Iturriaga R., Paternain G., Paternain M. (1998) Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8(5): 788–809MATHCrossRefMathSciNetGoogle Scholar
  10. F1.
    A. Fathi, Weak KAM Theorems in Lagrangian Dynamics, book in preparation.Google Scholar
  11. F2.
    A. Fathi, Une interprétation plus topologique de la démonstration du théorème de Birkhoff, appendice au ch.1 de [H1], 39–46.Google Scholar
  12. FM.
    Fathi A., Maderna E. (2007) Weak KAM theorem on non compact manifolds. NoDEA Nonlinear Differential Equations Appl. 14(1-2): 1–27MATHCrossRefMathSciNetGoogle Scholar
  13. H1.
    M. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau, Vol. 1, Asterisque 103–104 (1983).Google Scholar
  14. H2.
    Herman M. (1989) Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques. Vol. I, Inst. Hautes Études Sci. Publ. Math. 70: 47–101MATHCrossRefMathSciNetGoogle Scholar
  15. KO.
    Y. Katznelson, D. Ornstein, Twist maps and Aubry–Mather sets, Lipa’s Legacy (New York, 1995), Contemp. Math. 211, Amer. Math. Soc., Providence, RI (1997), 343–357.Google Scholar
  16. LS.
    Laudenbach F., Sikorav J.-C. (1985) Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent. (French) [Persistence of intersection with the zero section during a Hamiltonian isotopy into a cotangent bundle]. Invent. Math. 82(2): 349–357MATHCrossRefMathSciNetGoogle Scholar
  17. M.
    Mather J.N. (1991) Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2): 169–207MATHCrossRefMathSciNetGoogle Scholar
  18. O.
    Oh Y. (1997) Symplectic topology as the geometry of action functional, I. Relative Floer theory on the cotangent bundle. J. Diff. Geom. 46: 499–577MATHGoogle Scholar
  19. OtV.
    A. Ottolenghi, C. Viterbo, Solutions généralisées pour l’équation de Hamilton–Jacobi dans le cas d’évolution, preprintGoogle Scholar
  20. PPS.
    G. Paternain, L. Polterovich, K. Siburg. Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Dedicated to Vladimir I. Arnold on the Occasion of his 65th Birthday, Mosc. Math. J. 3:2 (2003), 593–619, 745Google Scholar
  21. S.
    Siburg K. (1998) A dynamical systems approach to Birkhoff’s theorem. (English summary) Enseign. Math. 44(3-4): 291–303MATHMathSciNetGoogle Scholar
  22. Si.
    Sikorav J.-C. (1986) Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale. C. R. Acad. Sci. Paris Sér. I Math. 302(3): 119–122MATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Laboratoire d’Analyse non linéaire et Géométrie (EA 2151)Université d’Avignon et des Pays de VaucluseAvignonFrance

Personalised recommendations