Geometric and Functional Analysis

, Volume 20, Issue 4, pp 845–869

Hawking’s Local Rigidity Theorem Without Analyticity

  • Spyros Alexakis
  • Alexandru D. Ionescu
  • Sergiu Klainerman
Article

Abstract

We prove the existence of a Hawking Killing vector-field in a full neighborhood of a local, regular, bifurcate, non-expanding horizon embedded in a smooth vacuum Einstein manifold. The result extends a previous result of Friedrich, Rácz and Wald, see [FRW, Prop.B.1], which was limited to the domain of dependence of the bifurcate horizon. So far, the existence of a Killing vector-field in a full neighborhood has been proved only under the restrictive assumption of analyticity of the space-time. Using this result we provide the first unconditional proof that a stationary black-hole solution must possess an additional, rotational Killing field in an open neighborhood of the event horizon. This work is accompanied by a second paper, where we prove a uniqueness result for smooth stationary black-hole solutions which are close (in a very precise, geometric sense) to the Kerr family of solutions, for arbitrary 0 < a < m.

Keywords and phrases

Killing vector-field Einstein vacuum equations non-expanding bifurcatehorizon unique continuation 

2010 Mathematics Subject Classification

35A02 83C05 83C57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.
    S. Alexakis, Unique continuation for the vacuum Einstein equations, preprint (2008); arXiv:0902.1131Google Scholar
  2. AIK.
    S. Alexakis, A.D. Ionescu, S. Klainerman, Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces, arXiv:0902.1173Google Scholar
  3. B.
    Biquard O.: Continuation unique à partir de l’infini conforme pour les métriques d’einstein. Math. Res. Lett. 15, 1091–1099 (2008)MATHMathSciNetGoogle Scholar
  4. Bu.
    G.L. Bunting, Proof of the Uniqueness Conjecture for Black Holes, PhD Thesis, Univ. of New England, Armidale, NSW (1983).Google Scholar
  5. C1.
    Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Letters 26, 331–333 (1971)CrossRefGoogle Scholar
  6. C2.
    B. Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972), Gordon and Breach, New York (1973), 57–214.Google Scholar
  7. C3.
    B. Carter, Has the Black Hole Equilibrium Problem Been Solved?, in “The Eighth Marcel Grossmann Meeting, Part A, B (Jerusalem, 1997), World Sci. Publ., River Edge, NJ (1999). 136–155.Google Scholar
  8. ChK.
    D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Series 41, Princeton University Press (1993).Google Scholar
  9. Chr1.
    P.T. Chrusciel, “No Hair” theorems – folklore, conjecture, results, Diff. Geom. and Math. Phys. (J. Beem, K.L. Duggal, eds.) Cont. Math. 170, AMS, Providence, (1994), 23–49,Google Scholar
  10. Chr2.
    Chrusciel P.T.: On the rigidity of analytic black holes. Comm. Math. Phys. 189, 1–7 (1997)MATHCrossRefMathSciNetGoogle Scholar
  11. ChrC.
    P.T. Chrusciel, J.L. Costa, On uniqueness of stationary vacuum black holes, arXiv:0806.0016Google Scholar
  12. ChrW.
    Chrusciel P.T., Wald R.M.: On the Topology of Stationary Black Holes. Class. Quant. Gr. 10, 2091–2101 (1993)MATHCrossRefGoogle Scholar
  13. FRW.
    Friedrich H., Rácz I., Wald R.: On the rigidity theorem for space-times with a stationary event horizon or a compact Cauchy horizon, Commun. Math. Phys. 204, 691–707 (1999)MATHCrossRefGoogle Scholar
  14. HE.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, 1973.Google Scholar
  15. Hö.
    L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 275, Springer-Verlag, Berlin (1985).Google Scholar
  16. IK1.
    Ionescu A.D., Klainerman S.: On the uniqueness of smooth, stationary black holes in vacuum. Invent. Math. 175, 35–102 (2009)MATHCrossRefMathSciNetGoogle Scholar
  17. IK2.
    Ionescu A.D., Klainerman S.: Uniqueness results for ill-posed characteristic problems in curved space-times. Commun. Math. Phys. 285, 873–900 (2009)MATHCrossRefMathSciNetGoogle Scholar
  18. IsM.
    Isenberg J., Moncrief V.: Symmetries of cosmological Cauchy horizons. Commun. Math. Phys. 89, 387–413 (1983)MATHCrossRefMathSciNetGoogle Scholar
  19. Isr.
    Israel W.: Event horizons in static vacuum space-times. Phys. Rev. Letters 164, 1776–1779 (1967)Google Scholar
  20. KN.
    S. Klainerman, F. Nicolò, The Evolution Problem in General Relativity, Progress in Mathematical Physics 25, Birkhäuser Boston, Inc., Boston, MA, (2003).Google Scholar
  21. M.
    Mars M.: A space-time characterization of the Kerr metric. Classical Quantum Gravity 16, 2507–2523 (1999)MATHCrossRefMathSciNetGoogle Scholar
  22. Ma.
    Mazur P.O.: Proof of uniqueness for the Kerr-Newman black hole solution. J. Phys. A: Math Gen. 15, 3173–3180 (1982)MATHCrossRefMathSciNetGoogle Scholar
  23. RW.
    Rácz I., Wald R.: Extensions of space-times with Killing horizons. Class. Quant. Gr. 9, 2463–2656 (1992)Google Scholar
  24. Re.
    Rendall A.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. R. Soc. London A 427, 221–239 (1990)MATHCrossRefMathSciNetGoogle Scholar
  25. Ro.
    Robinson D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)CrossRefGoogle Scholar
  26. S.
    Simon W.: Characterization of the Kerr metric. Gen. Rel. Grav. 16, 465–476 (1984)MATHCrossRefGoogle Scholar
  27. W.
    G. Weinstein, The stationary axisymmetric two body problem in general relativity, Comm. Pure. Appl. Math. XLV(1990), 1183–203.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Spyros Alexakis
    • 1
    • 2
  • Alexandru D. Ionescu
    • 3
    • 4
  • Sergiu Klainerman
    • 3
  1. 1.Dept. of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Dept. of MathematicsPrinceton UniversityPrincetonUSA
  4. 4.University of Wisconsin – MadisonMadisonUSA

Personalised recommendations