Geometric and Functional Analysis

, Volume 19, Issue 6, pp 1688–1692 | Cite as

Systolic Inequalities and Minimal Hypersurfaces

  • Larry Guth


We give a short proof of the systolic inequality for the n-dimensional torus. The proof uses minimal hypersurfaces. It is based on the Schoen–Yau proof that an n-dimensional torus admits no metric of positive scalar curvature.

Keywords and phrases

Systole minimal surface scalar curvature 

2010 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G1.
    M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes (translated from the French by S.M. Bates), reprint of the 2001 English edition, Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2007.Google Scholar
  2. G2.
    Gromov M.: Filling Riemannian manifolds. J. Differential Geom. 18(1), 1–147 (1983)zbMATHMathSciNetGoogle Scholar
  3. G3.
    Gromov M.: Large Riemannian manifolds, in “Curvature and Topology of Riemannian Manifolds (Katata, 1985)”. Springer Lecture Notes in Math. 1201, 108–121 (1986)CrossRefMathSciNetGoogle Scholar
  4. Gu.
    L. Guth, Volumes of balls in large Riemannian manifolds, arXiv:math/0610212Google Scholar
  5. SY1.
    Schoen R., Yau S.T.: Incompressible minimal surfaces, three-dimensional manifolds with nonnegative scalar curvature, and the positive mass conjecture in general relativity. Proc. Nat. Acad. Sci. USA 75(6), 2567 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  6. SY2.
    Schoen R., Yau S.T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28(1-3), 159–183 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  7. W.
    Wenger S.: A short proof of Gromov’s filling inequality. Proc. Amer. Math. Soc. 136(8), 2937–2941 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations