Advertisement

Geometric and Functional Analysis

, Volume 19, Issue 5, pp 1378–1425 | Cite as

On the Periods of Automorphic Forms on Special Orthogonal Groups and the Gross–Prasad Conjecture

  • Atsushi Ichino
  • Tamutsu Ikeda
Article

Abstract

In this paper, we would like to formulate a conjecture on a relation between a certain period of automorphic forms on special orthogonal groups and some L-value. Our conjecture can be considered as a refinement of the global Gross–Prasad conjecture.

Keywords and phrases

Periods of automorphic forms L-value the Gross–Prasad conjecture 

2000 Mathematics Subject Classification

11F67 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGRS.
    A. Aizenbud, D. Gourevitch, S. Rallis, G. Schiffmann, Multiplicity one theorems, Ann. of Math., to appear.Google Scholar
  2. Ar.
    Arthur J. (1989) Unipotent automorphic representations: conjectures. Astérisque 171/172: 13–71Google Scholar
  3. BFS.
    S. Böcherer, M. Furusawa, R. Schulze-Pillot, On the global Gross–Prasad conjecture for Yoshida liftings, in “Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins Univ. Press, Baltimore, MD, (2004), 105–130.Google Scholar
  4. BS.
    Böcherer S., Schulze-Pillot R. (1991) Siegel modular forms and theta series attached to quaternion algebras. Nagoya Math. J. 121: 35–96zbMATHMathSciNetGoogle Scholar
  5. C.
    Casselman W. (1980) The unramified principal series of \({\mathfrak{p}}\)-adic groups. I. The spherical function. Compositio Math. 40: 387–406zbMATHMathSciNetGoogle Scholar
  6. CoHH.
    Cowling M., Haagerup U., Howe R. (1988) Almost L 2 matrix coefficients. J. Reine Angew. Math. 387: 97–110zbMATHMathSciNetGoogle Scholar
  7. D.
    P. Deligne, Valeurs de fonctions L et périodes d’intégrales, Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math. 33, Part 2, Amer. Math. Soc., Providence, RI (1979), 313–346.Google Scholar
  8. GI.
    W.T. Gan, A. Ichino, On endoscopy and the refined Gross–Prasad conjecture for (SO5, SO4), preprint.Google Scholar
  9. GiPR.
    Ginzburg D., Piatetski-Shapiro I.I., Rallis S. (1997) L functions for the orthogonal group. Mem. Amer. Math. Soc. 128: 611MathSciNetGoogle Scholar
  10. GoJ.
    R. Godement, H. Jacquet, Zeta Functions of Simple Algebras, Springer Lecture Notes in Math. 260(1972).Google Scholar
  11. Gr.
    Gross B.H. (1997) On the motive of a reductive group. Invent. Math. 130: 287–313zbMATHCrossRefMathSciNetGoogle Scholar
  12. GrP1.
    Gross B.H., Prasad D. (1992) On the decomposition of a representation of SOn when restricted to SOn-1. Canad. J. Math. 44: 974–1002zbMATHMathSciNetGoogle Scholar
  13. GrP2.
    Gross B.H., Prasad D. (1994) On irreducible representations of SO2n+1 × SO2m. Canad. J. Math. 46: 930–950zbMATHMathSciNetGoogle Scholar
  14. H.
    Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal. 19 (1975), 104–204.Google Scholar
  15. Ha1.
    Harris M. (1990) Period invariants of Hilbert modular forms. I. Trilinear differential operators and L-functions, Cohomology of Arithmetic Groups and Automorphic Forms. Springer Lecture Notes in Math. 1447: 155–202CrossRefGoogle Scholar
  16. Ha2.
    Harris M. (1993) L-functions of 2 × 2 unitary groups and factorization of periods of Hilbert modular forms. J. Amer. Math. Soc. 6: 637–719zbMATHCrossRefMathSciNetGoogle Scholar
  17. Ha3.
    Harris M. (1994) Period invariants of Hilbert modular forms. II. Compositio Math 94: 201–226zbMATHMathSciNetGoogle Scholar
  18. HaK.
    Harris M., Kudla S.S. (1991) The central critical value of a triple product L-function. Ann. of Math. 133: 605–672CrossRefMathSciNetGoogle Scholar
  19. HaST.
    Harris M., Soudry D., Taylor R. (1993) l-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to GSp4(Q). Invent. Math. 112: 377–411zbMATHCrossRefMathSciNetGoogle Scholar
  20. He.
    He H. (2003) Unitary representations and theta correspondence for type I classical groups. J. Funct. Anal. 199: 92–121zbMATHCrossRefMathSciNetGoogle Scholar
  21. Hel.
    S. Helgason, Groups and Geometric Analysis, Pure and Applied Mathematics 113, Academic Press Inc., Orlando, FL, (1984).Google Scholar
  22. HiS.
    K. Hiraga, H. Saito, On L-packets for inner forms of SLn, preprint.Google Scholar
  23. HoP.
    Howe R., Piatetski-Shapiro I.I. (1983) Some examples of automorphic forms on Sp4. Duke Math. J. 50: 55–106zbMATHCrossRefMathSciNetGoogle Scholar
  24. I1.
    Ichino A. (2005) Pullbacks of Saito–Kurokawa lifts. Invent. Math. 162: 551–647zbMATHCrossRefMathSciNetGoogle Scholar
  25. I2.
    Ichino A. (2008) Trilinear forms and the central values of triple product L-functions. Duke Math. J. 145: 281–307zbMATHCrossRefMathSciNetGoogle Scholar
  26. II.
    Ichino A., Ikeda T. (2008) On Maass lifts and the central critical values of triple product L-functions. Amer. J. Math. 130: 75–114zbMATHCrossRefMathSciNetGoogle Scholar
  27. Ik1.
    Ikeda T. (2006) Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture. Duke Math. J. 131: 469–497zbMATHCrossRefMathSciNetGoogle Scholar
  28. Ik2.
    Ikeda T. (2008) On the lifting of hermitian modular forms. Compositio Math. 144: 1107–1154zbMATHCrossRefGoogle Scholar
  29. KMS.
    Kato S., Murase A., Sugano T. (2003) Whittaker–Shintani functions for orthogonal groups. Tohoku Math. J. 55: 1–64zbMATHCrossRefMathSciNetGoogle Scholar
  30. Kn.
    A.W. Knapp, Representations of GL2(R) and GL2(C), Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math. 33:1 Amer. Math. Soc., Providence, RI (1979), 87–91.Google Scholar
  31. Ko.
    Kohnen W. (1980) Modular forms of half-integral weight on Γ0(4). Math. Ann. 248: 249–266zbMATHCrossRefMathSciNetGoogle Scholar
  32. KoS.
    Kohnen W., Skoruppa N.-P. (1989) A certain Dirichlet series attached to Siegel modular forms of degree two. Invent. Math. 95: 541–558zbMATHCrossRefMathSciNetGoogle Scholar
  33. KoZ.
    Kohnen W., Zagier D. (1981) Values of L-series of modular forms at the center of the critical strip. Invent. Math. 64: 175–198zbMATHCrossRefMathSciNetGoogle Scholar
  34. Koj.
    Kojima H. (1982) An arithmetic of Hermitian modular forms of degree two. Invent. Math. 69: 217–227zbMATHCrossRefMathSciNetGoogle Scholar
  35. Kr.
    Krieg A. (1991) The Maaß spaces on the Hermitian half-space of degree 2. Math. Ann. 289: 663–681zbMATHCrossRefMathSciNetGoogle Scholar
  36. M.
    Macdonald I.G. (1980) The volume of a compact Lie group. Invent. Math. 56: 93–95zbMATHCrossRefMathSciNetGoogle Scholar
  37. RS.
    Raghavan S., Sengupta J. (1991) A Dirichlet series for Hermitian modular forms of degree 2. Acta Arith. 58: 181–201zbMATHMathSciNetGoogle Scholar
  38. Ro.
    Roberts B. (2001) Global L-packets for GSp(2) and theta lifts. Doc. Math. 6: 247–314zbMATHMathSciNetGoogle Scholar
  39. S1.
    Shimura G. (1981) On certain zeta functions attached to two Hilbert modular forms. II. The case of automorphic forms on a quaternion algebra. Ann. of Math. 114: 569–607CrossRefMathSciNetGoogle Scholar
  40. S2.
    Shimura G. (1983) Algebraic relation between critical values of zeta functions and inner products. Amer. J. Math. 105: 253–285zbMATHCrossRefMathSciNetGoogle Scholar
  41. S3.
    Shimura G. (1988) On the critical values of certain Dirichlet series and the periods of automorphic forms. Invent. Math. 94: 245–305zbMATHCrossRefMathSciNetGoogle Scholar
  42. S4.
    Shimura G. (1999) An exact mass formula for orthogonal groups. Duke Math. J. 97: 1–66zbMATHCrossRefMathSciNetGoogle Scholar
  43. Si.
    A.J. Silberger, Introduction to Harmonic Analysis on Reductive p-Adic Groups, Mathematical Notes 23, Princeton University Press, Princeton, NJ, 1979.Google Scholar
  44. Su.
    Sugano T. (1995) Jacobi forms and the theta lifting. Comment. Math. Univ. St. Paul. 44: 1–58zbMATHMathSciNetGoogle Scholar
  45. SunZ.
    B. Sun, C.-B. Zhu, Multiplicity one theorems: the archimedean case, preprint.Google Scholar
  46. T.
    J. Tate, Number theoretic background, Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math. 33, Part 2, Amer. Math. Soc., Providence, RI (1979), 3–26.Google Scholar
  47. W.
    Waldspurger J.-L. (1985) Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compositio Math. 54: 173–242zbMATHMathSciNetGoogle Scholar
  48. Wa.
    T.C. Watson, Rankin triple products and quantum chaos, Ann. of Math., to appear.Google Scholar
  49. Y1.
    Yoshida H. (1980) Siegel’s modular forms and the arithmetic of quadratic forms. Invent. Math. 60: 193–248zbMATHCrossRefMathSciNetGoogle Scholar
  50. Y2.
    Yoshida H. (1995) On a conjecture of Shimura concerning periods of Hilbert modular forms. Amer. J. Math. 117: 1019–1038zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Mathematics, Graduate School of ScienceOsaka City UniversityOsakaJapan
  2. 2.Graduate school of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations