Advertisement

Geometric and Functional Analysis

, Volume 19, Issue 2, pp 406–422 | Cite as

The Dehn Function of Stallings’ Group

  • Will DisonEmail author
  • Murray Elder
  • Timothy R. Riley
  • Robert Young
Article

Abstract

We prove that the Dehn function of a group of Stallings that is finitely presented but not of type \({\mathcal{F}_3}\) is quadratic.

Keywords and phrases

Dehn function Stallings’ group isoperimetric function finiteness properties 

2000 Mathematics Subject Classification

20F65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BBMS.
    Baumslag G., Bridson M.R., Miller C.F., Short H.: Finitely presented subgroups of automatic groups and their isoperimetric functions. J. London Math. Soc. (2) 56(2), 292–304 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bi.
    R. Bieri, Homological dimension of discrete groups, Queen Mary Lecture Notes, 1976.Google Scholar
  3. Br1.
    M.R. Bridson, personal communication.Google Scholar
  4. Br2.
    Bridson M.R.: Doubles, finiteness properties of groups, and quadratic isoperimetric inequalities. Journal of Algebra 214, 652–667 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. G.
    S.M. Gersten, Finiteness properties of asynchronously automatic groups, in “Geometric Group Theory,vol. 3 (R. Charney, M. Davis, M. Shapiro, eds.), Ohio State University, Mathematical Research Institute Publications, de Gruyter (1995), 121–133.Google Scholar
  6. Gr.
    D. Groves, personal communication.Google Scholar
  7. P.
    Papasoglu P.: On the asymptotic invariants of groups satisfying a quadratic isoperimetric inequality. J. Differential Geom. 44, 789–806 (1996)MathSciNetzbMATHGoogle Scholar
  8. R.
    Riley T.R.: Higher connectedness of asymptotic cones. Topology 42, 1289–1352 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. S.
    Stallings J.: A finitely presented group whose 3-dimensional integral homology is not finitely generated. Amer. J. Math. 85, 541–543 (1963)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Will Dison
    • 1
    Email author
  • Murray Elder
    • 2
  • Timothy R. Riley
    • 1
  • Robert Young
    • 3
  1. 1.Department of MathematicsUniversity of Bristol, University WalkBristolUK
  2. 2.MathematicsUniversity of QueenslandBrisbaneAustralia
  3. 3.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance

Personalised recommendations