Geometric and Functional Analysis

, Volume 19, Issue 2, pp 356–372

A Hadwiger-Type Theorem for the Special Unitary Group

Article

Abstract

The dimension of the space of SU(n) and translation-invariant continuous valuations on \({\mathbb {C}^n}\), n ≥ 2, is computed. For even n, this dimension equals (n2 + 3n + 10)/2; for odd n it equals (n2 + 3n + 6)/2. An explicit geometric basis of this space is constructed. The kinematic formulas for SU(n) are obtained as corollaries.

Keywords and phrases

Valuation kinematic formula integral geometry 

2000 Mathematics Subject Classification

53C65 52A22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A1.
    Alesker S.: On P. McMullen’s conjecture on translation invariant valuations. Adv. Math. 155, 239–263 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. A2.
    Alesker S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. GAFA, Geom. funct. anal. 11, 244–272 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. A3.
    Alesker S.: Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations. J. Differential Geom. 63, 63–95 (2003)MathSciNetMATHGoogle Scholar
  4. A4.
    Alesker S.: The multiplicative structure on polynomial valuations. GAFA, Geom. funct. anal. 14, 1–26 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. A5.
    Alesker S.: SU(2)-invariant valuations, Geometric Aspects of Functional Analysis. Israel Seminar Notes (GAFA) 2002–2003 1850, 21–29 (2004) Springer LNMMathSciNetGoogle Scholar
  6. A6.
    Alesker S.: Valuations on convex sets, non-commutative determinants, and pluripotential theory. Adv. Math. 195, 561–595 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. A7.
    Alesker S.: Valuations on manifolds: a survey. GAFA, Geom. funct. anal. 17, 1321–1341 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. A8.
    Alesker, S. A Fourier type transform on translation invariant valuations on convex sets, preprint, arXiv:math/0702842.Google Scholar
  9. A9.
    Alesker S.: Plurisubharmonic functions on the octonionic plane and Spin(9)-invariant valuations on convex sets. J. Geom. Anal. 18(3), 651–686 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. B1.
    Bernig A.: Valuations with Crofton formula and Finsler geometry. Adv. Math. 210, 733–753 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. B2.
    Bernig A.: A product formula for valuations on manifolds with applications to the integral geometry of the quaternionic line. Comment. Math. Helv. 84(1), 1–19 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. B3.
    A. Bernig, Integral geometry under G 2 and Spin(7), preprint, arXiv:0803.3885.Google Scholar
  13. BB.
    Bernig A., Bröcker L.: Valuations on manifolds and Rumin cohomology. J. Differential Geom. 75, 433–457 (2007)MathSciNetMATHGoogle Scholar
  14. BF1.
    Bernig A., Fu J.H.G.: Convolution of valuations. Geom. Dedicata 123, 153–169 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. BF2.
    A. Bernig, J.H.G. Fu, Hermitian integral geometry, preprint, arXiv:0801.0711.Google Scholar
  16. Be.
    A.L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, Folge, Bd. 10., Springer-Verlag, Berlin etc. (1987).Google Scholar
  17. Bo1.
    Borel A.: Some remarks about Lie groups transitive on spheres and tori. Bull. Am. Math. Soc. 55, 580–587 (1949)MathSciNetCrossRefMATHGoogle Scholar
  18. Bo2.
    Borel A.: Le plan projectif des octaves et les sphères comme espaces homogenes. C.R. Acad. Sci. 230, 1378–1380 (1950)MathSciNetMATHGoogle Scholar
  19. F1.
    J.H.G. Fu, Integral geometry and Alesker’s theory of valuations, Integral Geometry and Convexity. Proceedings of the International Conference, Wuhan, China, October 18–23, 2004, (E.L. Grinberg, et al., ed.) Hackensack, NJ: World Scientific (2006), 17– 27.Google Scholar
  20. F2.
    Fu J.H.G.: Structure of the unitary valuation algebra. J. Differential Geom. 72, 509–533 (2006)MathSciNetMATHGoogle Scholar
  21. K.
    Klain D.: Even valuations on convex bodies. Trans. Amer. Math. Soc. 352, 71–93 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. MS.
    D. McDuff, D. Salamon, Introduction to Symplectic Topology. Oxford Mathematical Monographs, 1995.Google Scholar
  23. Mc.
    McMullen P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc. 35, 113–135 (1977)MathSciNetCrossRefMATHGoogle Scholar
  24. MoS.
    Montgomery D., Samelson H.: Transformation groups of spheres. Ann. Math. 44, 454–470 (1943)MathSciNetCrossRefGoogle Scholar
  25. P.
    H. Park, Kinematic formulas for the real subspaces of complex space forms of dimension 2 and 3, PhD Thesis, University of Georgia, 2002.Google Scholar
  26. R.
    Rumin M.: Formes différentielles sur les variétés de contact. J. Differential Geom. 39, 281–330 (1994)MathSciNetMATHGoogle Scholar
  27. S.
    M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. V. 2nd ed., Publish or Perish, Berkeley, 1979.Google Scholar
  28. T.
    H. Tasaki, Generalization of Kähler angle and integral geometry in complex projective spaces. in “Steps in Differential Geometry”, Proceedings of the Colloquium on Differential Geometry, Debrecen, (2001), 349–361.Google Scholar
  29. Z.
    Zähle M.: Integral and current representation of Federer’s curvature measures. Arch. Math. 46, 557–567 (1986)CrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Département de MathématiquesFribourgSwitzerland

Personalised recommendations