Advertisement

Geometric & Functional Analysis GAFA

, Volume 16, Issue 4, pp 767–837 | Cite as

An anomaly formula for Ray–Singer metrics on manifolds with boundary

  • J. Brüning
  • Xiaonan Ma
Original Paper

Abstract.

Using the heat kernel, we derive first a local Gauss–Bonnet–Chern theorem for manifolds with a non-product metric near the boundary. Then we establish an anomaly formula for Ray–Singer metrics defined by a Hermitian metric on a flat vector bundle over a Riemannian manifold with boundary, not assuming that the Hermitian metric on the flat vector bundle is flat nor that the Riemannian metric has product structure near the boundary.

Keywords and phrases.

Ray–Singer analytic torsion anomaly formula characteristic classes 

AMS Mathematics Subject Classification.

58J52 58J28 58J35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2006

Authors and Affiliations

  1. 1.Institut für Mathematik der Humboldt-Universität zu BerlinBerlinGermany
  2. 2.UMR 7640 du CNRS, Centre de MathématiquesÉcole PolytechniquePalaiseau CedexFrance

Personalised recommendations