Geometric & Functional Analysis GAFA

, Volume 14, Issue 1, pp 27–57 | Cite as

A sum-product estimate in finite fields, and applications

  • Jean BourgainEmail author
  • Nets KatzEmail author
  • Terence TaoEmail author
Original Article


Let A be a subset of a finite field \( F := \mathbf{Z}/q\mathbf{Z} \) for some prime q. If \( |F|^{\delta} < |A| < |F|^{1-\delta} \) for some δ > 0, then we prove the estimate \( |A + A| + |A \cdot A| \geq c(\delta)|A|^{1+\varepsilon} \) for some ε = ε(δ) > 0. This is a finite field analogue of a result of [ErS]. We then use this estimate to prove a Szemerédi-Trotter type theorem in finite fields, and obtain a new estimate for the Erdös distance problem in finite fields, as well as the three-dimensional Kakeya problem in finite fields.


((no keywords)) 

Mathematics Subject Classification (2000).

((no classification)) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser-Verlag 2004

Authors and Affiliations

  1. 1.School of MathematicsInstitute of Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsWashington University in St. LouisSt. LouisUSA
  3. 3.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations