International Journal of Public Health

, Volume 61, Issue 9, pp 1013–1020 | Cite as

Multimorbidity in adults from a southern Brazilian city: occurrence and patterns

  • Bruno Pereira Nunes
  • Fabio Alberto Camargo-Figuera
  • Marília Guttier
  • Paula Duarte de Oliveira
  • Tiago N. Munhoz
  • Alicia Matijasevich
  • Andréa Dâmaso Bertoldi
  • Fernando César Wehrmeister
  • Marysabel Pinto Telis Silveira
  • Elaine Thumé
  • Luiz Augusto Facchini
Original Article

Abstract

Objectives

The aim of this study was to evaluate occurrences and patterns of multimorbidity in adults from a southern Brazilian city.

Methods

A population-based cross-sectional study was carried out in 2012 through face-to-face interviews with adults (20 or more years) living in Pelotas, southern Brazil. Multimorbidity was evaluated by a list of 11 morbidities (based on medical diagnosis; Patient Health Questionnaire 9 for depression; and Anatomical Therapeutic Chemical index) and operationalized according to two cutoff points: ≥2 and ≥3 morbidities. Descriptive analysis and factor analysis (FA) were performed.

Results

The sample was made up of 2927 adults. Multimorbidity reached 29.1 % (95 % CI: 27.1; 31.1) for ≥2, and 14.3 % (95 % CI: 12.8; 15.8) for ≥3 morbidities and was greater in females, older people, those with less schooling and those from lower economic classes. Four pairs (frequency ≥5 %) and four triplets (frequency ≥2 %) were observed. Two patterns of morbidities (cardiometabolic and joint problems; and respiratory diseases) explained 93 % of total variance.

Conclusions

Multimorbidity was common in the studied population. The observed patterns may be used to generate and improve Brazilian diseases guidelines.

Keywords

Comorbidity Multimorbidity Chronic diseases Statistical disease clustering Elderly Brazil 

Supplementary material

38_2016_819_MOESM1_ESM.pdf (134 kb)
Supplementary material 1 (PDF 133 kb)

References

  1. Agborsangaya CB, Lau D, Lahtinen M, Cooke T, Johnson JA (2012) Multimorbidity prevalence and patterns across socioeconomic determinants: a cross-sectional survey. BMC Public Health 12:201. doi:10.1186/1471-2458-12-201 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agborsangaya CB, Ngwakongnwi E, Lahtinen M, Cooke T, Johnson JA (2013) Multimorbidity prevalence in the general population: the role of obesity in chronic disease clustering. BMC Public Health 13:1161. doi:10.1186/1471-2458-13-1161 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Associação Brasileira de Empresas de Pesquisa (2010) Critério de Classificação Econômica Brasil. Associação Brasileira de Empresas de Pesquisa, São PauloGoogle Scholar
  4. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B (2012) Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380(9836):37–43. doi:10.1016/s0140-6736(12)60240-2 CrossRefPubMedGoogle Scholar
  5. Barros AJD et al (2008) UFPel’s epidemiology MSc program based on research consortium: an innovative experience. Rev Bras Epidemiol 11:133–144CrossRefGoogle Scholar
  6. CSDH (2008) Closing the gap in a generation: health equity through action on the social determinants of health. final report of the commission on social determinants of health. World Health Organization, GenevaGoogle Scholar
  7. Dias da Costa JS, Victora CG (2006) What’s “a public health problem”? Rev Bras Epidemiol 9:144–146. doi:10.1590/S1415-790X2006000100018 CrossRefGoogle Scholar
  8. DiMatteo M, Lepper HS, Croghan TW (2000) Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Arch Intern Med 160(14):2101–2107. doi:10.1001/archinte.160.14.2101 CrossRefPubMedGoogle Scholar
  9. Fiore V et al (2015) The association between diabetes and depression: a very disabling condition. Endocrine 48(1):14–24. doi:10.1007/s12020-014-0323-x CrossRefPubMedGoogle Scholar
  10. Fortin M, Stewart M, Poitras ME, Almirall J, Maddocks H (2012) A systematic review of prevalence studies on multimorbidity: toward a more uniform methodology. Ann Fam Med 10(2):142–151. doi:10.1370/afm.1337 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Galenkamp H, Huisman M, Braam AW, Schellevis FG, Deeg DJH (2014) Disease prevalence based on older people’s self-reports increased, but patient–general practitioner agreement remained stable, 1992–2009. J Clin Epidemiol 67(7):773–780. doi:10.1016/j.jclinepi.2014.02.002 CrossRefPubMedGoogle Scholar
  12. Garin N et al (2014) Multimorbidity patterns in a national representative sample of the Spanish adult population. PLoS One 9(1):e84794. doi:10.1371/journal.pone.0084794 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den Bos GA (2001) Causes and consequences of comorbidity: a review. J Clin Epidemiol 54(7):661–674. doi:10.1016/S0895-4356(00)00363-2 CrossRefPubMedGoogle Scholar
  14. Gonzalez JS et al (2008) Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care 31(12):2398–2403. doi:10.2337/dc08-1341 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guthrie B, Payne K, Alderson P, McMurdo MET, Mercer SW (2012) Adapting clinical guidelines to take account of multimorbidity. BMJ. doi:10.1136/bmj.e6341 Google Scholar
  16. Harrison C, Britt H, Miller G, Henderson J (2014) Examining different measures of multimorbidity, using a large prospective cross-sectional study in Australian general practice. BMJ Open. doi:10.1136/bmjopen-2013-004694 Google Scholar
  17. Huntley AL, Johnson R, Purdy S, Valderas JM, Salisbury C (2012) Measures of multimorbidity and morbidity burden for use in primary care and community settings: a systematic review and guide. Ann Fam Med 10(2):134–141. doi:10.1370/afm.1363 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Islam MM, Valderas JM, Yen L, Dawda P, Jowsey T, McRae IS (2014) Multimorbidity and comorbidity of chronic diseases among the senior australians: prevalence and patterns. PLoS One 9(1):e83783. doi:10.1371/journal.pone.0083783 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jerliu N, Toci E, Burazeri G, Ramadani N, Brand H (2013) Prevalence and socioeconomic correlates of chronic morbidity among elderly people in Kosovo: a population-based survey. BMC Geriatr 13:22. doi:10.1186/1471-2318-13-22 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kriegsman DMW, Penninx BWJH, Van Eijk JTM, Boeke AJP, Deeg DJH (2006) Self-reports and general practitioner information on the presence of chronic diseases in community dwelling elderly. J Clin Epidemiol 49(12):1407–1417. doi:10.1016/S0895-4356(96)00274-0 CrossRefGoogle Scholar
  21. Kubinger K (2003) On artificial results due to using factor analysis for dichotomous variables. Psycol Sci 45:106–110Google Scholar
  22. Le Reste JY et al (2013) The European general practice research network presents a comprehensive definition of multimorbidity in family medicine and long term care, following a systematic review of relevant literature. J Am Med Dir Assoc 14(5):319–325. doi:10.1016/j.jamda.2013.01.001 CrossRefPubMedGoogle Scholar
  23. Mendoza-Sassi R, Béria JU (2001) Health services utilization: a systematic review of related factors. Cad Saude Publica 17:819–832. doi:10.1590/S0102-311X2001000400016 CrossRefPubMedGoogle Scholar
  24. Moraes EN (2012) Health care for the elderly: conceptual aspects. Pan American Health Organization, Brasília, p 98Google Scholar
  25. Norman G, Streiner D (2008) Principal components and factor analysis. Fooling around with factors biostatistics: the bare essentials, 3rd edn. Bc Decker, HamiltonGoogle Scholar
  26. Oliveira PD, Menezes AMB, Bertoldi AD, Wehrmeister FC (2013) Inhaler use in adolescents and adults with self-reported physician-diagnosed asthma, bronchitis, or emphysema in the city of Pelotas, Brazil. J bras pneumol 39:287–295CrossRefPubMedPubMedCentralGoogle Scholar
  27. Prados-Torres A, Calderón-Larrañaga A, Hancco-Saavedra J, Poblador-Plou B, van den Akker M (2014) Multimorbidity patterns: a systematic review. J Clin Epidemiol 67(3):254–266. doi:10.1016/j.jclinepi.2013.09.021 CrossRefPubMedGoogle Scholar
  28. Salisbury C (2012) Multimorbidity: redesigning health care for people who use it. Lancet 380(9836):7–9. doi:10.1016/S0140-6736(12)60482-6 CrossRefPubMedGoogle Scholar
  29. Salive ME (2013) Multimorbidity in older adults. Epidemiol Rev. doi:10.1093/epirev/mxs009 PubMedGoogle Scholar
  30. Santos IS et al (2013) Sensibilidade e especificidade do Patient Health Questionnaire-9 (PHQ-9) entre adultos da população geral. Cad Saude Publica 29:1533–1543CrossRefPubMedGoogle Scholar
  31. Schafer I, Kaduszkiewicz H, Wagner H-O, Schon G, Scherer M, van den Bussche H (2014) Reducing complexity: a visualisation of multimorbidity by combining disease clusters and triads. BMC Public Health 14(1):1285CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schäfer I et al (2010) Multimorbidity patterns in the elderly: a new approach of disease clustering identifies complex interrelations between chronic conditions. PLoS One 5(12):e15941. doi:10.1371/journal.pone.0015941 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schmidt MI et al (2011) Chronic non-communicable diseases in Brazil: burden and current challenges. Lancet 377(9781):1949–1961. doi:10.1016/s0140-6736(11)60135-9 CrossRefPubMedGoogle Scholar
  34. Talbot F, Nouwen A (2000) A review of the relationship between depression and diabetes in adults: is there a link? Diabetes Care 23(10):1556–1562. doi:10.2337/diacare.23.10.1556 CrossRefPubMedGoogle Scholar
  35. Vellakkal S et al (2014) Are estimates of socioeconomic inequalities in chronic disease artefactually narrowed by self-reported measures of prevalence in low-income and middle-income countries? Findings from the WHO-SAGE survey. J Epidemiol Community Health. doi:10.1136/jech-2014-204621 PubMedPubMedCentralGoogle Scholar
  36. Violan C et al (2013) Comparison of the information provided by electronic health records data and a population health survey to estimate prevalence of selected health conditions and multimorbidity. BMC Public Health 13(1):251CrossRefPubMedPubMedCentralGoogle Scholar
  37. Violan C et al (2014) Prevalence, determinants and patterns of multimorbidity in primary care: a systematic review of observational studies. PLoS One 9(7):e102149. doi:10.1371/journal.pone.0102149 CrossRefPubMedPubMedCentralGoogle Scholar
  38. WHO (2013) Collaborating centre for drug statistics methodology. Guidelines for ATC classification and DDD assignment 2014, OsloGoogle Scholar

Copyright information

© Swiss School of Public Health (SSPH+) 2016

Authors and Affiliations

  • Bruno Pereira Nunes
    • 1
    • 2
  • Fabio Alberto Camargo-Figuera
    • 2
    • 3
  • Marília Guttier
    • 2
  • Paula Duarte de Oliveira
    • 2
  • Tiago N. Munhoz
    • 2
  • Alicia Matijasevich
    • 2
    • 4
  • Andréa Dâmaso Bertoldi
    • 2
  • Fernando César Wehrmeister
    • 2
  • Marysabel Pinto Telis Silveira
    • 5
  • Elaine Thumé
    • 6
  • Luiz Augusto Facchini
    • 2
    • 6
  1. 1.Department of NursingFederal University of PelotasPelotasBrazil
  2. 2.Department of Social Medicine, Postgraduate Program in EpidemiologyFederal University of PelotasPelotasBrazil
  3. 3.School of NursingUniversidad Industrial de SantanderBucaramangaColombia
  4. 4.Department of Preventive Medicine, Faculty of MedicineUniversity of São PauloSão PauloBrazil
  5. 5.Department of Physiology and Pharmacology, Institute of BiologyFederal University of PelotasPelotasBrazil
  6. 6.Department of Nursing, Postgraduate Program in NursingFederal University of PelotasPelotasBrazil

Personalised recommendations