Advertisement

International Journal of Public Health

, Volume 55, Issue 4, pp 315–323 | Cite as

San Antonio heart study diabetes prediction model applicable to a Middle Eastern population? Tehran glucose and lipid study

  • Mohammadreza Bozorgmanesh
  • Farzad HadaeghEmail author
  • Azadeh Zabetian
  • Fereidoun Azizi
Original Article

Abstract

Objectives

To assess the validity of the San Antonio heart study (SAHS) diabetes prediction model in a large representative Iranian population.

Methods

A risk function derived from data in the SAHS to predict the 7.5-year risk of diabetes, was tested for its ability to predict incident diabetes in 3,242 individuals aged ≥20 years. The performance or ability to accurately predict diabetes risk, of the SAHS function compared with the performance of risk functions developed specifically from the Tehran lipid and glucose study. Comparisons included goodness of fit, discrimination, and calibration.

Results

The participants were followed for 6.3 years. The area under the receiver operating characteristic curve (AROC) for diabetes of SAHS model was 0.83 (95% CI 0.80–0.86). The model overestimated the risk of diabetes in TLGS population with the overall bias of 111%. After the recalibration, the model-predicted probability agreed well with the actual observed 6-year risk of diabetes.

Discussion and conclusion

The American SAHS was a prediction model for diabetes with good discrimination in an Iranian target population after calibration.

Keywords

Prediction Model Diabetes Validation General practice Screening 

Notes

Acknowledgments

This study was supported by grant No. 121 from the National Research Council of the Islamic Republic of Iran. We express our appreciation to the participants of district-13 of Tehran for their enthusiastic support in this study.

Conflict of interest statement

None.

References

  1. Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M (2007) What is the best predictor of future type 2 diabetes? Diabetes Care 30:1544–1548. doi: 10.2337/dc06-1331 CrossRefPubMedGoogle Scholar
  2. Azizi F, Ghanbarian A, Momenan AA, Hadaegh F, Mirmiran P, Hedayati M et al (2009) Prevention of non-communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II. Trials 10:5. doi: 10.1186/1745-6215-10-5 PubMedGoogle Scholar
  3. Chien K, Cai T, Hsu H, Su T, Chang W, Chen M et al (2009) A prediction model for type 2 diabetes risk among Chinese people. Diabetologia 52:443–450. doi: 10.1007/s00125-008-1232-4 CrossRefPubMedGoogle Scholar
  4. Colagiuri S, Cull CA, Holman RR (2002) Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? Diabetes Care 25:1410–1417. doi: 10.2337/diacare.25.8.1410 CrossRefPubMedGoogle Scholar
  5. Colagiuri S, Hussain Z, Zimmet P, Cameron A, Shaw J (2004) Screening for type 2 diabetes and impaired glucose metabolism. Diabetes Care 27:367–371. doi: 10.2337/diacare.27.2.367 CrossRefPubMedGoogle Scholar
  6. Conen D, Ridker PM, Mora S, Buring JE, Glynn RJ (2007) Blood pressure and risk of developing type 2 diabetes mellitus: The Women’s Health Study. Eur Heart J; 28:2937–2943. doi: 10.1093/eurheartj/ehm400 CrossRefPubMedGoogle Scholar
  7. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMedGoogle Scholar
  8. Friedwald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:419–503Google Scholar
  9. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R et al (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167. doi: 10.2337/diacare.26.11.3160 CrossRefPubMedGoogle Scholar
  10. Glumer C, Carstensen B, Sandbaek A, Lauritzen T, Jorgensen T, Borch-Johnsen K (2004) A Danish diabetes risk score for targeted screening: the Inter99 study. Diabetes Care 27:727–733. doi: 10.2337/diacare.27.3.727 CrossRefPubMedGoogle Scholar
  11. Glumer C, Vistisen D, Borch-Johnsen K, Colagiuri S (2006) Risk scores for type 2 diabetes can be applied in some populations but not all. Diabetes Care 29:410–414. doi: 10.2337/diacare.29.02.06.dc05-0945 CrossRefPubMedGoogle Scholar
  12. Hadaegh F, Bozorgmanesh MR, Ghasemi A, Harati H, Saadat N, Azizi F (2008) High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study. BMC Public Health 8:176. doi: 10.1186/1471-2458-8-176 CrossRefPubMedGoogle Scholar
  13. Hadaegh F, Shafiee G, Azizi F (2009) Anthropometric predictors of incident type 2 diabetes mellitus in Iranian women. Ann Saudi Med 29:194–200PubMedGoogle Scholar
  14. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  15. Herman WH (2009) Predicting risk for diabetes: choosing (or building) the right model. Ann Int Med 150:812–814. doi: 10.1059/0003-4819-150-11-200906020-00010 PubMedGoogle Scholar
  16. Hosmer DW, Lemeshow S (2000). Applied logistic regression. Wiley-Interscience, New YorkGoogle Scholar
  17. Johnson SL, Tabaei BP, Herman WH (2005) The efficacy and cost of alternative strategies for systematic screening for type 2 diabetes in the US population 45–74 years of age. Diabetes Care 28:307–311CrossRefPubMedGoogle Scholar
  18. Justice AC, Covinsky KE, Berlin JA (1999) Assessing the generalizability of prognostic information. Ann Intern Med 130:515–524PubMedGoogle Scholar
  19. Kahn HS, Cheng YJ, Thompson TJ, Imperatore G, Gregg EW (2009) Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years. Ann Intern Med 150:741–751PubMedGoogle Scholar
  20. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403. doi: 10.1056/NEJMoa012512 CrossRefPubMedGoogle Scholar
  21. Kolberg JA, Jorgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E et al (2009) Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 32:1207–1212. doi: 10.2337/dc08-1935 CrossRefPubMedGoogle Scholar
  22. Lindstrom J, Tuomilehto J (2003) The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 26:725–731. doi: 10.2337/diacare.26.3.725 CrossRefPubMedGoogle Scholar
  23. MacKay MF, Haffner SM, Wagenknecht LE, D’Agostino RB, Hanley AJG (2009) Prediction of type 2 diabetes using alternate anthropometric measures in a multi-ethnic cohort. Diabetes Care 32:956–958. doi: 10.2337/dc08-1663 CrossRefPubMedGoogle Scholar
  24. McNeely MJ, Boyko EJ, Leonetti DL, Kahn SE, Fujimoto WY (2003) Comparison of a clinical model, the oral glucose tolerance test, and fasting glucose for prediction of type 2 diabetes risk in Japanese Americans. Diabetes Care 26:758–763CrossRefPubMedGoogle Scholar
  25. Nyamdorj R, Qiao Q, Soderberg S, Pitkaniemi JM, Zimmet PZ, Shaw JE et al (2009) BMI compared with central obesity indicators as a predictor of diabetes incidence in Mauritius. Obesity (Silver Spring) 17:342–348. doi: 10.1038/oby.2008.503 Google Scholar
  26. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX et al (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20:537–544CrossRefPubMedGoogle Scholar
  27. Rahman M, Simmons RK, Harding AH, Wareham NJ, Griffin SJ (2008) A simple risk score identifies individuals at high risk of developing type 2 diabetes: a prospective cohort study. Fam Pract 25:191–196CrossRefPubMedGoogle Scholar
  28. Rathmann W, Martin S, Haastert B, Icks A, Holle R, Lowel H et al (2005) Performance of screening questionnaires and risk scores for undiagnosed diabetes: the KORA Survey 2000. Arch Intern Med 165:436–441CrossRefPubMedGoogle Scholar
  29. Schulze M, Joost H (2009) Rapid responses to: Henry S. Kahn, Yiling J. Cheng, Theodore J. Thompson, Giuseppina Imperatore, and Edward W. Gregg. Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years in Ann Intern Med 2009; 150:741–751: Integer points based scoring systems for diabetes prediction: The German Diabetes Risk Score (18 June). Retrieved 15 Jul 2009, from http://www.annals.org/cgi/eletters/150/11/741#114512
  30. Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M et al (2007) An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 30:510–515CrossRefPubMedGoogle Scholar
  31. Schulze MB, Weikert C, Pischon T, Bergmann MM, Al-Hasani H, Schleicher E et al (2009) Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care 32:2116–2119. doi: 10.2337/dc09-0197 CrossRefPubMedGoogle Scholar
  32. Stern MP, Williams K, Haffner SM (2002) Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med 136:575–581PubMedGoogle Scholar
  33. Talmud PJ Hingorani AD Cooper JA, Marmot MG, Brunner EJ, Kumari M et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838. doi: 10.1136/bmj.b4838
  34. Tulloch-Reid MK, Williams DE, Looker HC, Hanson RL, Knowler WC (2003) Do measures of body fat distribution provide information on the risk of type 2 diabetes in addition to measures of general Obesity? Diabetes Care 26:2556–2561. doi: 10.2337/diacare.26.9.2556 CrossRefPubMedGoogle Scholar
  35. Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB (2005) Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr 81:555–563PubMedGoogle Scholar
  36. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053CrossRefPubMedGoogle Scholar
  37. Wilson PWF, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino R B Sr (2007) Prediction of incident diabetes mellitus in middle-aged adults: The Framingham offspring study. Arch Intern Med 167:1068–1074. doi: 10.1001/archinte.167.10.1068 CrossRefPubMedGoogle Scholar

Copyright information

© Swiss School of Public Health 2010

Authors and Affiliations

  • Mohammadreza Bozorgmanesh
    • 1
  • Farzad Hadaegh
    • 1
    Email author
  • Azadeh Zabetian
    • 1
  • Fereidoun Azizi
    • 1
  1. 1.Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIslamic Republic of Iran

Personalised recommendations