Advertisement

computational complexity

, Volume 26, Issue 4, pp 911–948 | Cite as

Tight Size-Degree Bounds for Sums-of-Squares Proofs

  • Massimo Lauria
  • Jakob Nordström
Article
  • 49 Downloads

Abstract

We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size \({n^{\Omega{(d)}}}\) for values of d = d(n) from constant all the way up to \({n^{\delta}}\) for some universal constant \({\delta}\). This shows that the \({{n^{{\rm O}{(d)}}}}\) running time obtained by using the Lasserre semidefinite programming relaxations to find degree-d SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in Krajíček (Arch Math Log 43(4):427–441, 2004) and Dantchev & Riis (Proceedings of the 17th international workshop on computer science logic (CSL ’03), 2003) and then applying a restriction argument as in Atserias et al. (J Symb Log 80(2):450–476, 2015; ACM Trans Comput Log 17:19:1–19:30, 2016). This yields a generic method of amplifying SOS degree lower bounds to size lower bounds and also generalizes the approach used in Atserias et al. (2016) to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali–Adams from lower bounds on width, degree, and rank, respectively.

Subject classification

03F20 68Q17 90C22 

Keywords

Proof complexity resolution Lasserre Positivstellensatz sums-of-squares SOS semidefinite programming size degree rank clique lower bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert Atserias, Massimo Lauria & Jakob Nordström (2016). Narrow Proofs May Be Maximally Long. ACM Transactions on Computational Logic 17, 19:1–19:30. Preliminary version in CCC ’14.Google Scholar
  2. Albert Atserias, Moritz Müller & Sergi Oliva (2015). Lower Bounds for DNF-refutations of a Relativized Weak Pigeonhole Principle. Journal of Symbolic Logic 80(2), 450–476. Preliminary version in CCC ’13.Google Scholar
  3. Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David Steurer & Yuan Zhou (2012). Hypercontractivity, Sum-of-Squares Proofs, and Their Applications. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC ’12), 307–326.Google Scholar
  4. Boaz Barak & David Steurer (2014). Sum-of-Squares Proofs and the Quest Toward Optimal Algorithms. Technical Report TR14-059, Electronic Colloquium on Computational Complexity (ECCC).Google Scholar
  5. Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi & Pavel Pudlák (1994). Lower Bounds on Hilbert’s Nullstellensatz and Propositional Proofs. In Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’94), 794–806. Google Scholar
  6. Paul Beame, Toniann Pitassi & Nathan Segerlind (2007). Lower Bounds for Lovász–Schrijver Systems and Beyond Follow from Multiparty Communication Complexity. SIAM Journal on Computing 37(3), 845–869. Preliminary version in ICALP ’05.Google Scholar
  7. Olaf Beyersdorff, Nicola Galesi & Massimo Lauria (2013). Parameterized Complexity of DPLL Search Procedures. ACM Transactions on Computational Logic 14(3), 20:1–20:21. Preliminary version in SAT ’11.Google Scholar
  8. Olaf Beyersdorff, Nicola Galesi, Massimo Lauria & Alexander A. Razborov (2012). Parameterized Bounded-Depth Frege Is not Optimal. ACM Transactions on Computation Theory 4, 7:1–7:16. Preliminary version in ICALP ’11.Google Scholar
  9. Stefan S. Dantchev (2006). Relativisation Provides Natural Separations for Resolution-Based Proof Systems. In Proceedings of the 1st International Computer Science Symposium in Russia (CSR ’06), volume 3967 of Lecture Notes in Computer Science, 147–158. Springer.Google Scholar
  10. Stefan S. Dantchev., Barnaby Martin (2014) Relativization Makes Contradictions Harder for Resolution.. Annals of Pure and Applied Logic 165(3): 837–857CrossRefzbMATHMathSciNetGoogle Scholar
  11. Stefan S. Dantchev & Søren Riis (2003). On Relativisation and Complexity Gap for Resolution-Based Proof Systems. In Proceedings of the 17th International Workshop on Computer Science Logic (CSL ’03), volume 2803 of Lecture Notes in Computer Science, 142–154. Springer.Google Scholar
  12. Uriel Feige., Shafi Goldwasser., Laszlo Lovász., Shmuel Safra., Mario Szegedy (1996) Interactive Proofs and the Hardness of Approximating Cliques. Journal of the ACM 43(2): 268–292CrossRefzbMATHMathSciNetGoogle Scholar
  13. Dima Grigoriev (2001a) Complexity of Positivstellensatz proofs for the knapsack.. Computational Complexity 10(2): 139–154CrossRefzbMATHMathSciNetGoogle Scholar
  14. Dima Grigoriev (2001b) Linear Lower Bound on Degrees of Positivstellensatz Calculus Proofs for the Parity. Theoretical Computer Science 259(1–2): 613–622MathSciNetGoogle Scholar
  15. Dima Grigoriev, Edward A. Hirsch & Dmitrii V. Pasechnik (2002). Exponential Lower Bound for Static Semi-algebraic Proofs. In Proceedings of the 29th International Colloquium on Automata, Languages and Programming (ICALP ’02), volume 2380 of Lecture Notes in Computer Science, 257–268. Springer.Google Scholar
  16. Dima Grigoriev., Nicolai Vorobjov (2001) Complexity of Null- and Positivstellensatz proofs. Annals of Pure and Applied Logic 113(1–3): 153–160zbMATHMathSciNetGoogle Scholar
  17. Mika Göös & Toniann Pitassi (2014). Communication Lower Bounds via Critical Block Sensitivity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC ’14), 847–856.Google Scholar
  18. Subhash Khot (2002). On the Power of Unique 2-prover 1-round Games. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC ’02), 767–775.Google Scholar
  19. Arist Kojevnikov & Dmitry Itsykson (2006). Lower Bounds of Static Lovász–Schrijver Calculus Proofs for Tseitin Tautologies. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP ’06), volume 4051 of Lecture Notes in Computer Science, 323–334. Springer.Google Scholar
  20. Jan Krajíček (2004) Combinatorics of First Order Structures and Propositional Proof Systems. Archive for Mathematical Logic 43(4): 427–441CrossRefzbMATHMathSciNetGoogle Scholar
  21. Jean-Louis Krivine (1964) Anneaux préordonnés. Journal d’Analyse Mathématique 12(1): 307–326CrossRefzbMATHGoogle Scholar
  22. Jean B. Lasserre (2001). An explicit exact SDP relaxation for nonlinear 0-1 programs. In Proceedings of the 8th International Conference on Integer Programming and Combinatorial Optimization (IPCO ’01), volume 2081 of Lecture Notes in Computer Science, 293–303. Springer.Google Scholar
  23. Massimo Lauria & Jakob Nordström (2015). Tight Size-Degree Bounds for Sums-of-Squares Proofs. In Proceedings of the 30th Annual Computational Complexity Conference (CCC ’15), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), 448–466.Google Scholar
  24. Massimo Lauria, Pavel Pudlák, Vojtěch Rödl & Neil Thapen (2013). The Complexity of Proving That a Graph is Ramsey. In Proceedings of the 40th International Colloquium on Automata, Languages and Programming (ICALP ’13), volume 7965 of Lecture Notes in Computer Science, 684–695. Springer.Google Scholar
  25. James R. Lee, Prasad Raghavendra, David Steurer & Ning Tan (2014). On the Power of Symmetric LP and SDP Relaxations. In Proceedings of the 29th Annual IEEE Conference on Computational Complexity (CCC ’14), 13–21.Google Scholar
  26. Yurii Nesterov (2000). Squared Functional Systems and Optimization Problems. In High Performance Optimization, H. Frenk, K. Roos, T. Terlaky & S. Zhang, editors, 405–440. Kluwer Academic Publisher.Google Scholar
  27. Ryan O’Donnell (2016). SOS is Not Obviously Automatizable, Even Approximately. Technical Report TR16-141, Electronic Colloquium on Computational Complexity (ECCC).Google Scholar
  28. Ryan O’Donnell & Yuan Zhou (2013). Approximability and Proof Complexity. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’13), 1537–1556.Google Scholar
  29. Pablo A. Parrilo (2000). Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology. Available at http://resolver.caltech.edu/CaltechETD:etd-05062004-055516.
  30. Toniann Pitassi & Nathan Segerlind (2012). Exponential Lower Bounds and Integrality Gaps for Tree-Like Lovász–Schrijver Procedures. SIAM Journal on Computing 41(1), 128–159. Preliminary version in SODA ’09.Google Scholar
  31. Grant Schoenebeck (2008). Linear Level Lasserre Lower Bounds for Certain k-CSPs. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’08), 593–602.Google Scholar
  32. N. Z. Shor (1987). An Approach to Obtaining Global Extremums in Polynomial Mathematical Programming Problems. Cybernetics 23(5), 695–700. Translated from Kibernetika, No. 5, pages 102–106, 1987.Google Scholar
  33. Gilbert Stengle (1973) A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry. Mathematische Annalen 207(2): 87–97zbMATHMathSciNetGoogle Scholar
  34. Madhur Tulsiani (2009). CSP Gaps and Reductions in the Lasserre Hierarchy. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC ’09), 303–312.Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze StatisticheSapienza - Università di RomaRomaItaly
  2. 2.KTH Royal Institute of TechnologySchool of Computer Science and CommunicationStockholmSweden

Personalised recommendations