computational complexity

, Volume 25, Issue 2, pp 455–505 | Cite as

Subexponential Size Hitting Sets for Bounded Depth Multilinear Formulas

Article

Abstract

In this paper, we give subexponential size hitting sets for bounded depth multilinear arithmetic formulas. Using the known relation between black-box PIT and lower bounds, we obtain lower bounds for these models.

For depth-3 multilinear formulas, of size exp\({(n^\delta)}\), we give a hitting set of size exp\({\left(\tilde{O}\left(n^{2/3 + 2\delta/3}\right) \right)}\). This implies a lower bound of exp\({(\tilde{\Omega}(n^{1/2}))}\) for depth-3 multilinear formulas, for some explicit polynomial.

For depth-4 multilinear formulas, of size exp\({(n^\delta)}\), we give a hitting set of size exp\({\left(\tilde{O}\left(n^{2/3 + 4\delta/3}\right) \right)}\). This implies a lower bound of exp\({(\tilde{\Omega}(n^{1/4}))}\) for depth-4 multilinear formulas, for some explicit polynomial.

A regular formula consists of alternating layers of \({+,\times}\) gates, where all gates at layer i have the same fan-in. We give a hitting set of size (roughly) exp\({\left(n^{1- \delta}\right)}\), for regular depth-d multilinear formulas with formal degree at most n and size exp\({(n^\delta)}\), where \({\delta = O(1/{\sqrt{5}^d})}\). This result implies a lower bound of roughly exp\({(\tilde{\Omega}(n^{1/{\sqrt{5}^d}}))}\) for such formulas.

We note that better lower bounds are known for these models, but also that none of these bounds was achieved via construction of a hitting set. Moreover, no lower bound that implies such PIT results, even in the white-box model, is currently known.

Our results are combinatorial in nature and rely on reducing the underlying formula, first to a depth-4 formula, and then to a read-once algebraic branching program (from depth-3 formulas, we go straight to read-once algebraic branching programs).

Subject classification

68Q05 68Q15 68Q17 

Keywords

arithmetic circuits polynomial identity testing derandomization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Agrawal (2005). Proving Lower Bounds Via Pseudo-random Generators. In Proceedings of the 25th FSTTCS, volume 3821 of LNCS, 92–105.Google Scholar
  2. M. Agrawal, R. Gurjar, A. Korwar & N. Saxena (2015). Hitting-Sets for ROABP and Sum of Set-Multilinear Circuits. SIAM J. Comput. 44(3), 669–697. URL http://dx.doi.org/10.1137/140975103.
  3. Agrawal M., Kayal N., Saxena N. (2004) PRIMES is in P. Annals of Mathematics 160(2): 781–793MathSciNetCrossRefMATHGoogle Scholar
  4. M. Agrawal, C. Saha, R. Saptharishi & N. Saxena (2012). Jacobian hits circuits: hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits. In STOC, 599–614.Google Scholar
  5. M. Agrawal, C. Saha & N. Saxena (2013). Quasi-polynomial hitting-set for set-depth-\({\Delta}\) formulas. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1–4, 2013, 321–330.Google Scholar
  6. M. Agrawal & V. Vinay (2008). Arithmetic circuits: A chasm at depth four. In Proceedings of the 49th Annual FOCS, 67–75.Google Scholar
  7. N. Alon & J. Spencer (2008). The probabilistic method. J. Wiley, 3rd edition.Google Scholar
  8. M. Anderson, D. van Melkebeek & I. Volkovich (2011). Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae. In Proceedings of the 26th Annual CCC, 273–282.Google Scholar
  9. DeMillo R. A., Lipton R. J. (1978) A Probabilistic Remark on Algebraic Program Testing. Inf. Process. Lett. 7(4): 193–195CrossRefMATHGoogle Scholar
  10. Dvir Z., Shpilka A. (2006) Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. SIAM J. on Computing 36(5): 1404–1434MathSciNetCrossRefMATHGoogle Scholar
  11. Dvir Z., Shpilka A., Yehudayoff A. (2009) Hardness-randomness tradeoffs for bounded depth arithmetic circuits. SIAM J. on Computing 39(4): 1279–1293MathSciNetCrossRefMATHGoogle Scholar
  12. M. A. Forbes, R. Saptharishi & A. Shpilka (2014). Hitting sets for multilinear read-once algebraic branching programs, in any order. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, 867–875.Google Scholar
  13. M. A. Forbes & A. Shpilka (2012). On identity testing of tensors, low-rank recovery and compressed sensing. In Proceedings of the 44th annual STOC, 163–172.Google Scholar
  14. M. A. Forbes & A. Shpilka (2013). Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, 243–252. URL http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.34.
  15. A. Gupta (2014). Algebraic Geometric Techniques for Depth-4 PIT & Sylvester-Gallai Conjectures for Varieties. Electronic Colloquium on Computational Complexity (ECCC) 21, 130. URL http://eccc.hpi-web.de/report/2014/130.
  16. A. Gupta, P. Kamath, N. Kayal & R. Saptharishi (2013). Arithmetic Circuits: A Chasm at Depth Three. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 578–587.Google Scholar
  17. R. Gurjar, A. Korwar, N. Saxena & T. Thierauf (2015). Deterministic Identity Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. In 30th Conference on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, D. Zuckerman, editor, volume 33 of LIPIcs, 323–346. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. URL http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323.
  18. J. Heintz & C. P. Schnorr (1980). Testing Polynomials which Are Easy to Compute (Extended Abstract). In Proceedings of the 12th annual STOC, 262–272.Google Scholar
  19. V. Kabanets & R. Impagliazzo (2003). Derandomizing polynomial identity tests means proving circuit lower bounds. In Proceedings of the 35th Annual STOC, 355–364.Google Scholar
  20. Kabanets V., Impagliazzo R. (2004) Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds. Computational Complexity 13(1-2): 1–46MathSciNetCrossRefMATHGoogle Scholar
  21. Z. S. Karnin, P. Mukhopadhyay, A. Shpilka & I. Volkovich (2013). Deterministic Identity Testing of Depth-4 Multilinear Circuits with Bounded Top Fan-in. SIAM J. Comput. 42(6), 2114–2131. URL http://dx.doi.org/10.1137/110824516.
  22. Karnin Z. S., Shpilka A. (2011) Black box polynomial identity testing of generalized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica 31(3): 333–364MathSciNetCrossRefMATHGoogle Scholar
  23. N. Kayal, C. Saha & R. Saptharishi (2014). A super-polynomial lower bound for regular arithmetic formulas. In Symposium on Theory of Computing, STOC 2014, 146–153.Google Scholar
  24. N. Kayal & S. Saraf (2009). Blackbox Polynomial Identity Testing for Depth 3 Circuits. In Proceedings of the 50th Annual FOCS, 198–207.Google Scholar
  25. Kayal N., Saxena N. (2007) Polynomial Identity Testing for Depth 3 Circuits. Computational Complexity 16(2): 115–138MathSciNetCrossRefMATHGoogle Scholar
  26. P. Koiran (2010). Arithmetic circuits: the chasm at depth four gets wider. CoRR arXiv:1006.4700[abs].
  27. N. Nisan (1991). Lower Bounds for Non-Commutative Computation. In Proceedings of the 23rd Annual STOC, 410–418.Google Scholar
  28. Nisan N., Wigderson A. (1996) Lower bound on arithmetic circuits via partial derivatives. Computational Complexity 6: 217–234MathSciNetCrossRefMATHGoogle Scholar
  29. R. Oliveira, A. Shpilka & B. L. Volk (2015). Subexponential Size Hitting Sets for Bounded Depth Multilinear Formulas. In 30th Conference on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, D. Zuckerman, editor, volume 33 of LIPIcs, 304–322. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. URL http://dx.doi.org/10.4230/LIPIcs.CCC.2015.304.
  30. Raz R. (2006) Separation of Multilinear Circuit and Formula Size. Theory of Computing 2(1): 121–135MathSciNetCrossRefMATHGoogle Scholar
  31. R. Raz (2009). Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2).Google Scholar
  32. Raz R., Shpilka A. (2005) Deterministic polynomial identity testing in non-commutative models. Computational Complexity 14(1): 1–19MathSciNetCrossRefMATHGoogle Scholar
  33. Raz R., Shpilka A., Yehudayoff A. (2008) A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM J. on Computing 38(4): 1624–1647MathSciNetCrossRefMATHGoogle Scholar
  34. Raz R., Yehudayoff A. (2009) Lower Bounds and Separations for Constant Depth Multilinear Circuits. Computational Complexity 18(2): 171–207MathSciNetCrossRefMATHGoogle Scholar
  35. S. Saraf & I. Volkovich (2011). Black-box identity testing of depth-4 multilinear circuits. In Proceedings of the 43rd annual STOC, 421–430.Google Scholar
  36. N. Saxena & C. Seshadhri (2011). Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn’t matter. In Proceedings of the 43rd Annual STOC, 431–440.Google Scholar
  37. Schwartz J. T. (1980) Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4): 701–717MathSciNetCrossRefMATHGoogle Scholar
  38. A. Shpilka & I. Volkovich (2008). Read-once Polynomial Identity Testing. In Proceedings of the 40th Annual STOC, 507–516.Google Scholar
  39. A. Shpilka & I. Volkovich (2009). Improved Polynomial Identity Testing for Read-Once Formulas. In APPROX-RANDOM, 700–713.Google Scholar
  40. A. Shpilka & I. Volkovich (2010). On the Relation between Polynomial Identity Testing and Finding Variable Disjoint Factors. In ICALP (1), 408–419.Google Scholar
  41. Shpilka A., Yehudayoff A. (2010) Arithmetic Circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science 5(3-4): 207–388MathSciNetCrossRefMATHGoogle Scholar
  42. S. Tavenas (2013). Improved Bounds for Reduction to Depth 4 and Depth 3. In Mathematical Foundations of Computer Science 2013 - 38th International Symposium, MFCS 2013, 813–824.Google Scholar
  43. L. G. Valiant, S. Skyum, S. Berkowitz & C. Rackoff (1983). Fast parallel computation of polynomials using few processors. SIAM J. on Computing 12(4), 641–644. ISSN 0097-5397 (print), 1095-7111 (electronic).Google Scholar
  44. R. Zippel (1979). Probabilistic algorithms for sparse polynomials. In EUROSAM, 216–226.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA
  2. 2.Department of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations