computational complexity

, Volume 24, Issue 4, pp 777–821 | Cite as

On the complexity of inverting integer and polynomial matrices

Article

Abstract

An algorithm is presented that probabilistically computes the exact inverse of a nonsingular n × n integer matrix A using \({({n^3(\log||A||+\log \kappa(A)))}^{1+o(1)}}\) bit operations. Here, \({||A||= \max_{ij}|A_{ij}|}\) denotes the largest entry in absolute value, \({\kappa(A) := n ||A^{-1}||\,||A||}\) is the condition number of the input matrix, and the “+o(1)” in the exponent indicates a missing factor \({c_1 {(\log n)}^{c_2}{({\rm loglog} ||A||)}^{c_3}}\) for positive real constants c1, c2, c3. A variation of the algorithm is presented for polynomial matrices that computes the inverse of a nonsingular n × n matrix whose entries are polynomials of degree d over a field using \({{(n^3d)}^{1+o(1)}}\) field operations. Both algorithms are randomized of the Las Vegas type: failure may be reported with probability at most 1/2, and if failure is not reported, then the output is certified to be correct in the same running time bound.

Keywords

Integer matrix polynomial matrix matrix inverse Smith normal form bit complexity randomized algorithm 

Subject classification

68W30 15A35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Abbott, M. Bronstein & T. Mulders (1999). Fast deterministic computation of determinants of dense matrices. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation ISSAC ’99, Vancouver, Canada, S. Dooley, editor, 197–204. ACM Press, New York. URL http://dx.doi.org/10.1145/309831.309934.
  2. P. Bürgisser, M. Clausen & M. A. Shokrollahi (1996). Algebraic Complexity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag.Google Scholar
  3. A. De, P. Kurur, C. Saha & R. Saptharishi (2013). Fast integer multiplication using modular arithmetic. SIAM Journal on Computing 42(2), 658–699. URL http://dx.doi.org/10.1137/100811167.
  4. J. D. Dixon (1982). Exact solution of linear equations using p-adic expansions. Numerische Mathematik 40, 137–141. URL http://dx.doi.org/10.1007/BF01459082.
  5. P. D. Domich, R. Kannan & L. E. Trotter, Jr. (1987). Hermite normal form computation using modulo determinant arithmetic. Mathematics of Operations Research 12(1), 50–59. URL http://www.jstor.org/stable/3689672.
  6. W. Eberly, M. Giesbrecht & G. Villard (2000). Computing the determinant and Smith form of an integer matrix. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach CA, 675–685. URL http://dx.doi.org/10.1109/SFCS.2000.892335.
  7. M. Fürer (2009). Faster integer multiplication. SIAM Journal on Computing 39(3), 979–1005. URL http://dx.doi.org/10.1137/070711761.
  8. J. von zur Gathen & J. Gerhard (2013). Modern Computer Algebra. Cambridge University Press, 3rd edition.Google Scholar
  9. S. Gupta (2011). Hermite Forms of Polynomial Matrices. Master’s thesis, University of Waterloo. URL http://hdl.handle.net/10012/6108.
  10. J. L. Hafner & K. S. McCurley (1991). Asymptotically fast triangularization of matrices over rings. SIAM Journal on Computing 20(6), 1068–1083. URL http://dx.doi.org/10.1137/0220067.
  11. C. S. Iliopoulos (1989). Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM Journal on Computing 18(4), 658–669. URL http://dx.doi.org/10.1137/0218045.
  12. C. P. Jeannerod & G. Villard (2005). Essentially optimal computation of the inverse of generic polynomial matrices. Journal of Complexity 21, 72–86. URL http://dx.doi.org/10.1016/j.jco.2004.03.005.
  13. E. Kaltofen (1992). On computing determinants of matrices without divisions. In Proceedings of the 1992 International Symposium on Symbolic and Algebraic Computation ISSAC ’92, Berkeley CA, P. S. Wang, editor, 342–349. ACM Press, New York. URL http://doi.acm.org/10.1145/143242.143350.
  14. E. Kaltofen & G. Villard (2004). On the complexity of computing determinants. Computational Complexity 13(3–4), 91–130. URL http://dx.doi.org/10.1007/s00037-004-0185-3.
  15. Kaplansky I (1949) Elementary divisors and modules. Transactions of the American Mathematical Society 66, 464–491MATHMathSciNetCrossRefGoogle Scholar
  16. D. E. Knuth (1981). The Art of Computer Programming, Vol.2, Seminumerical Algorithms. Addison–Wesley (Reading MA), 2nd edition.Google Scholar
  17. T. Mulders & A. Storjohann (2004). Certified dense linear system solving. Journal of Symbolic Computation 37(4), 485–510. URL http://dx.doi.org/10.1016/j.jsc.2003.07.004.
  18. M. Newman (1972). Integral Matrices. Academic Press.Google Scholar
  19. V.Y. Pan, R.E. Rosholt D. Ivolgin, B. Murphy, Y. Tang & X. Yan (2008). Additive preconditioning for matrix computations. In Third International Computer Science Symposium in Russia, CSR 2008 Moscow, Russia, June 7–12, 2008 Proceedings, LNCS 5010, 327–383. Springer Verlag. URL http://dx.doi.org/10.1007/978-3-540-79709-8_37.
  20. A. Schönhage (1971). Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica 1, 139–144. URL http://dx.doi.org/10.1007/BF00289520.
  21. A. Schönhage & V. Strassen (1971). Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292. URL http://dx.doi.org/10.1007/BF02242355.
  22. A. Storjohann (1996). Near optimal algorithms for computing Smith normal forms of integer matrices. In Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation ISSAC ’96, Zürich, Switzerland, Y. N. Lakshman, editor, 267–274. ACM Press, New York. URL http://doi.acm.org/10.1145/236869.237084.
  23. A. Storjohann (1997). A solution to the extended gcd problem with applications. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation ISSAC ’97, Maui HI, W. W. Küchlin, editor, 109–116. ACM Press, New York. URL http://dx.doi.org/10.1145/258726.258762.
  24. A. Storjohann (2000). Algorithms for Matrix Canonical Forms. Ph.D. thesis, Swiss Federal Institute of Technology, ETH–Zurich. URL http://dx.doi.org/10.3929/ethz-a-004141007.
  25. A. Storjohann (2005). The shifted number system for fast linear algebra on integer matrices. Journal of Complexity 21(4), 609–650. URL http://dx.doi.org/10.1016/j.jco.2005.04.002. Festschrift for the 70th Birthday of Arnold Schönhage.
  26. A. Storjohann & T. Mulders (1998). Fast algorithms for linear algebra modulo N. In Algorithms—ESA ’98, G. Bilardi, G. F. Italiano, A. Pietracaprina & G. Pucci, editors, LNCS 1461, 139–150. Springer Verlag. URL http://dx.doi.org/10.1007/3-540-68530-8_12.
  27. W. Zhou, G. Labahn & A. Storjohann (2014). A deterministic algorithm for inverting a polynomial matrix. Journal of Complexity 31, 162–173. URL http://dx.doi.org/10.1016/j.jco.2014.09.004.

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations