Advertisement

computational complexity

, Volume 20, Issue 4, pp 579–590 | Cite as

Special Issue In Memory of Misha Alekhnovich. Foreword

  • A. Borodin
  • T. Pitassi
  • A. Razborov
Article
  • 91 Downloads

Keywords

Steklov Institute Linear Code SIAM Journal Proof System Impossibility Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich M. (2004) Mutilated chessboard problem is exponentially hard for resolution. Theoretical Computer Science 310(1-3): 513–525MathSciNetCrossRefzbMATHGoogle Scholar
  2. Alekhnovich M. (2005) Linear diophantine equations over polynomials and soft decoding of Reed-Solomon codes. IEEE Transactions on Information Theory 51(7): 2257–2265MathSciNetCrossRefGoogle Scholar
  3. M. Alekhnovich (2011a). Lower bounds for k-DNF resolution on random 3-CNFs. computational complexity in this volume.Google Scholar
  4. M. Alekhnovich (2011b). More on Average Case vs Approximation Complexity. computational complexity in this volume.Google Scholar
  5. M. Alekhnovich, S. Arora & I. Tourlakis (2011a). Toward strong nonapproximability results in the Lovász-Schrijver hierarchy. computational complexity in this volume.Google Scholar
  6. Alekhnovich M., Ben-Sasson E. (2007) Linear Upper Bounds for Random Walk on Small Density Random 3-CNFs. SIAM Journal on Computing 36(5): 1248–1263MathSciNetCrossRefGoogle Scholar
  7. Alekhnovich M., Ben-Sasson E., Razborov A., Wigderson A. (2002) Space complexity in propositional calculus. SIAM Journal on Computing 31(4), 1184–1211MathSciNetCrossRefzbMATHGoogle Scholar
  8. Alekhnovich M., Ben-Sasson E., Razborov A., Wigderson A. (2004) Pseudorandom generators in propositional proof complexity. SIAM Journal on Computing 34(1), 67–88MathSciNetCrossRefzbMATHGoogle Scholar
  9. M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impgaliazzo, A. Magen, & T. Pitassi (2011b). Toward a model for backtracking and dynamic programming. computational complexity in this volume.Google Scholar
  10. Alekhnovich M., Braverman M., Feldman V., Klivans A.R., Pitassi T. (2008) The complexity of properly learning simple concept classes. Journal of Computer and System Sciences 74(1): 16–34MathSciNetCrossRefzbMATHGoogle Scholar
  11. Alekhnovich M., Buss S., Moran S., Pitassi T. (2001) Minimum Propositional Proof Length is NP-Hard to Linearly Approximate. Journal of Symbolic Logic 66: 171–191MathSciNetCrossRefzbMATHGoogle Scholar
  12. Alekhnovich M., Hirsch E., Itsykson D. (2005) Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. Journal of Automated Reasoning 35(1-3): 51–72MathSciNetCrossRefzbMATHGoogle Scholar
  13. Alekhnovich M., Johannsen J., Pitassi T., Urquhart A. (2007) An exponential separation between regular and general resolution. Theory of Computing 3: 81–102MathSciNetCrossRefGoogle Scholar
  14. M. Alekhnovich, S. Khot, G. Kindler & N. Vishnoi (2011c). Hardness of approximating the closest vector problem with pre-processing. computational complexity in this volume.Google Scholar
  15. Alekhnovich M., Razborov A. (2003) Lower bounds for the polynomial calculus: non-binomial case. Proceedings of the Steklov Institute of Mathematics 242: 18–35MathSciNetGoogle Scholar
  16. Alekhnovich M., Razborov A. (2008) Resolution is not automatizable unless W[P] is tractable. SIAM Journal on Computing 38(4): 1347–1363MathSciNetCrossRefzbMATHGoogle Scholar
  17. M. Alekhnovich & A. Razborov (2011). Satisfiability, Branch-Width and Tseitin Tautologies. computational complexity in this volume.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Computer ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations