Advertisement

computational complexity

, Volume 21, Issue 3, pp 479–497 | Cite as

Low-Depth Witnesses are Easy to Find

  • Luís Antunes
  • Lance Fortnow
  • Alexandre Pinto
  • André Souto
Article
  • 96 Downloads

Abstract

Kolmogorov Complexity measures the amount of information in a string by the size of the smallest program that generates that string. Antunes, Fortnow, van Melkebeek, and Vinodchandran captured the notion of useful information by computational depth, the difference between the polynomial-time-bounded Kolmogorov complexity and traditional Kolmogorov complexity.

We show unconditionally how to probabilistically find satisfying assignments for formulas that have at least one assignment of logarithmic depth. The converse holds under a standard hardness assumption though fails if BPP = FewP = EXP. We also prove that assuming the existence of good pseudorandom generators one cannot increase the depth of a string efficiently.

Keywords

Computational depth SAT formulas Kolmogorov complexity Pseudorandom generators 

Subject classification

68Q17 68Q30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Antunes & L. Fortnow (2009). Worst-Case Running Times for Average-Case Algorithms. Proceedings of Annual IEEE Conference on Computational Complexity 298–303.Google Scholar
  2. Antunes L., Fortnow L., van Melkebeek D., Vinodchandran N. (2006) Computational depth: concept and applications. Theoretical Computer Science 354(3): 391–404 ISSN 0304-3975MathSciNetMATHCrossRefGoogle Scholar
  3. C. Bennett (1988). Logical depth and physical complexity. In A half-century survey on The Universal Turing Machine, 227–257. Oxford University Press, Inc., New York, NY, USA. ISBN 0-19-853741-7.Google Scholar
  4. Chaitin G. (1966) On the Length of Programs for Computing Finite Binary Sequences. Journal of ACM 13(4): 547–569 ISSN 0004-5411MathSciNetMATHCrossRefGoogle Scholar
  5. R. Impagliazzo & A. Wigderson (1996). P = BPP unless E has sub-exponential circuits: Derandomizing the XOR Lemma (Preliminary Version). In Proceedings of the 29th ACM Symposium on Theory of Computing, 220–229. ACM Press.Google Scholar
  6. Klivans A., van Melkebeek D. (2002) Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM Journal on Computing 31(5): 1501–1526 ISSN 0097-5397MathSciNetMATHCrossRefGoogle Scholar
  7. A. Kolmogorov (1950). Foundations of the Theory of Probability. Chelsea Publishing.Google Scholar
  8. Kolmogorov A. (1965) Three approaches to the quantitative definition of information. Problems of Information Transmission 1(1): 1–7MathSciNetGoogle Scholar
  9. Levin L. (1973) Universal Search Problems. Problems Information Transmission 9: 265–266Google Scholar
  10. M. Li & P. Vitányi (2008). An Introduction to Kolmogorov Complexity and Its Applications. Springer Publishing Company, Incorporated. ISBN 0387339981, 9780387339986.Google Scholar
  11. P. Miltersen (2001). Derandomizing complexity classes. Handbook of Randomized Computing.Google Scholar
  12. Nisan N., Wigderson A. (1994) Hardness vs. randomness. Journal of Computer and System Sciences 49: 149–167MathSciNetMATHCrossRefGoogle Scholar
  13. Solomonoff R. (1964) A formal theory of inductive inference, part I. Information and Control 7(1): 1–22MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Luís Antunes
    • 1
  • Lance Fortnow
    • 2
  • Alexandre Pinto
    • 3
  • André Souto
    • 4
  1. 1.Faculty of Sciences, Instituto de TelecomunicaçõesUniversity of PortoPortoPortugal
  2. 2.Northwestern UniversityEvanstonUSA
  3. 3.Instituto Superior da Maia (ISMAI), Centro de Ciências e Tecnologias de Computação (CCTC)Universidade do MinhoAvioso S. PedroPortugal
  4. 4.Instituto de TelecomunicaçõesFaculty of Sciences University of PortoPortoPortugal

Personalised recommendations