Advertisement

computational complexity

, Volume 20, Issue 2, pp 329–366 | Cite as

Derandomizing Arthur-Merlin Games and Approximate Counting Implies Exponential-Size Lower Bounds

  • Barış Aydınlıog̃lu
  • Dan Gutfreund
  • John M. Hitchcock
  • Akinori Kawachi
Article

Abstract

We show that if Arthur-Merlin protocols can be derandomized, then there is a language computable in deterministic exponential-time with access to an NP oracle that requires circuits of exponential size. More formally, if every promise problem in prAM, the class of promise problems that have Arthur-Merlin protocols, can be computed by a deterministic polynomial-time algorithm with access to an NP oracle, then there is a language in ENP that requires circuits of size Ω(2 n /n). The lower bound in the conclusion of our theorem suffices to construct pseudorandom generators with exponential stretch.

We also show that the same conclusion holds if the following two related problems can be computed in polynomial time with access to an NP-oracle: (i) approximately counting the number of accepted inputs of a circuit, up to multiplicative factors; and (ii) recognizing an approximate lower bound on the number of accepted inputs of a circuit, up to multiplicative factors.

Keywords

Approximate counting Arthur-Merlin protocols circuit complexity derandomization 

Subject classification

68Q15 68Q17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aaronson, B. Aydınlıog̃lu, H. Buhrman, J. Hitchcock & D. van Melkebeek, “A note on exponential circuit lower bounds from derandomizing Arthur-Merlin games,” ECCC technical report. TR10-174, 2010.Google Scholar
  2. S. Arora, & B. Barak, “Complexity Theory: A Modern Approach,” Cambridge University Press, 2009.Google Scholar
  3. V. Arvind & P. Mukhopadhyay, “Derandomizing the isolation lemma and lower bounds for circuit size,” in Proceedings of the 11th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems and the 12th International Workshop on Randomization and Computation, ser. LNCS 5171, 2008, pp. 276–289.Google Scholar
  4. A. Atserias, “Distinguishing SAT from polynomial-size circuits, through black-box queries,” in Proceedings of the 21st Annual IEEE Conference on Computational Complexity, pp. 88–95, 2006.Google Scholar
  5. L. Babai, L. Fortnow, N. Nisan & A. Wigderson, “BPP has subexponential simulation unless EXPTIME has publishable proofs,” Computational Complexity, vol. 3, pp. 307–318, 1993.Google Scholar
  6. Babai L., . Moran S: “Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes”. Journal of Computer and System Sciences 36, 254–276 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  7. M. Blum & S. Micali, “How to generate cryptographically strong sequences of pseudo-random bits,” SIAM Journal on Computing, vol. 13, no. 4, pp. 850864, 1984.Google Scholar
  8. A. Bogdanov & L. Trevisan, “On worst-case to average-case reductions for NP problems,”SIAM Journal on Computing, vol. 36, no. 4, pp. 1119–1159, 2006.Google Scholar
  9. Bshouty N.H., Cleve R., Gavaldà R., Kannan S. , Tamon C.: “Oracles and queries that are sufficient for exact learning,”. Journal of Computer and System Sciences, 52(3), 421–433 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. H. Buhrman, L. Fortnow & T. Thierauf, “Nonrelativizing separations,” in Proceedings of the 13rd Annual IEEE Conference on Computational Complexity, 1998, pp. 8–12.Google Scholar
  11. Cai J.-Y.: “\({\mathrm{S}_2^p \subseteq \mathrm{ZPP}^{\mathrm{NP}}}\) ,”. Journal of Computer and System Sciences 73(1), 25–35 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. V. T. Chakaravarthy & S. Roy, “Finding irrefutable certificates for \({S_2^P}\) via Arthur and Merlin,” in Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science, 2008, pp. 157–168.Google Scholar
  13. Dvir Z., Shpilka A., Yehudanoff A.: “Hardness-randomness tradeoffs for bounded depth arithmetic circuits,”. SIAM Journal on Computing 39(4), 1279–1293 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. Even S., Selman A.L., Yacobi Y.: “The complexity of promise problems with applications to public-key cryptography,”. Information and Control 61(2), 159–173 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  15. Fortnow L., Pavan A., Sengupta S.: “Proving SAT does not have small circuits with an application to the two queries problem,”. Journal of Computer and System Sciences 74(3), 358–363 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. M. Fürer, O. Goldreich, Y. Mansour, M. Sipser & S. Zachos, “On completeness and soundness in interactive proof systems,” Advances in Computing Research 5: Randomness and Computation, pp. 429–442, 1989.Google Scholar
  17. O. Goldreich, “On promise problems (a survey in memory of Shimon Even [1935-2004]),” ECCC technical report. TR05-018, 2005.Google Scholar
  18. O. Goldreich, “Computational Complexity: A Conceptual Perspective,” Cambridge University Press, 2008.Google Scholar
  19. O. Goldreich, “In a world of P=BPP,” ECCC technical report. TR10-135, 2010.Google Scholar
  20. Goldwasser S., Micali S., Rackoff C.: “The knowledge complexity of interactive proof systems,”. SIAM Journal on Computing 18(1), 186–208 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  21. S. Goldwasser & M. Sipser, “Private coins versus public coins in interactive proof system,” in Advances in Computing Research, Vol. 5: Randomness and Computation, S. Micali, Ed. JAI Press, 1989, pp. 73–90.Google Scholar
  22. D. Gutfreund & A. Kawachi, “Derandomizing Arthur-Merlin Games and Approximate Counting Implies Exponential-Size Lower Bounds,” in Proceedings of the 25th Annual IEEE Conference on Computational Complexity, 2010, pp. 38–49.Google Scholar
  23. Impagliazzo R., Kabanets V., Wigderson A.: “In search of an easy witness: exponential time vs. probabilistic polynomial time,”. Journal of Computer and System Sciences 65(4), 672–694 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  24. R. Impagliazzo & A. Wigderson, “P=BPP if E requires exponential circuits: Derandomizing the XOR lemma,” in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 220–229.Google Scholar
  25. Kabanets V., Impagliazzo R.: “Derandomizing polynomial identity tests means proving circuit lower bounds,”. Computational Complexity 13(1-2), 1–46 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Kannan R.: “Circuit-size lower bound and non-reducibility to sparse sets,”. Information and Control 55(1–3), 40–56 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  27. R. M. Karp & R. J. Lipton, “Some connections between nonuniform and uniform complexity classes,” in Proceedings of the 12th Annual Symposium on Theoretical Computer Science, 1980, pp. 302–309.Google Scholar
  28. J. Kinne, D. van Melkebeek & R. Shaltiel, “Pseudorandom generators and typically-correct derandomization,” in Proceedings of the 12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems and the 13th International Workshop on Randomization and Computation, 2009, pp. 574–587.Google Scholar
  29. Klivans A.R., van Melkebeek D.: “Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses,”. SIAM Journal on Computing 31(5), 1501–1526 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  30. Miltersen P.B., Vinodchandran N.V.: “Derandomizing Arthur-Merlin games using hitting sets,”. Computational Complexity 14(3), 256–279 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  31. P. B. Miltersen, N. V. Vinodchandran & O. Watanabe, “Super-polynomial versus half-exponential circuit size in the exponential hierarchy,” in Proceedings of the 5th Annual International Conference on Computing and Combinatorics, 1999, pp. 210–220.Google Scholar
  32. Nisan N.: “Pseudorandom bits for constant depth circuits,”. Combinatorica 11, 63–70 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Nisan N., Wigderson A.: “Hardness vs. randomness,”. Journal of Computer and System Sciences 49, 149–167 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  34. R. Santhanam, “Circuit lower bounds for Merlin-Arthur classes,” in Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 2007, pp. 275–283.Google Scholar
  35. R. Shaltiel & C. Umans, “Simple extractors for all min-entropies and a new pseudo-random generator,” Journal of ACM, vol. 52, no. 2, pp. 172–216, 2005.Google Scholar
  36. Shaltiel R., Umans C.: “Pseudorandomness for approximate counting and sampling,”. Computational Complexity 15(4), 298–341 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Shannon C.E.: “The synthesis of two-terminal switching circuits,”. Bell System Technical Journal 28(1), 59–98 (1949)MathSciNetGoogle Scholar
  38. Umans C.: “Pseudo-random generators for all hardnesses,”. Journal of Computer and System Sciences 67(2), 419–440 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  39. Viola E.: “Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates,”. SIAM Journal on Computing 36(5), 1387–1403 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  40. A. C. Yao, “Theory and application of trapdoor functions,”in Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, 1982, pp. 80–91.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Barış Aydınlıog̃lu
    • 1
  • Dan Gutfreund
    • 2
  • John M. Hitchcock
    • 3
  • Akinori Kawachi
    • 4
  1. 1.University of Wisconsin-MadisonMadisonUSA
  2. 2.IBM ResearchHaifaIsrael
  3. 3.University of WyomingLaramieUSA
  4. 4.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations