Advertisement

computational complexity

, Volume 12, Issue 1–2, pp 23–47 | Cite as

Complexity of some arithmetic problems for binary polynomials

  • Eric AllenderEmail author
  • Anna BernasconiEmail author
  • Carsten DammEmail author
  • Joachim von zur GathenEmail author
  • Michael SaksEmail author
  • Igor ShparlinskiEmail author
Original Article
  • 61 Downloads

Abstract

We study various combinatorial complexity measures of Boolean functions related to some natural arithmetic problems about binary polynomials, that is, polynomials over \( \mathbb{F}_2 \). In particular, we consider the Boolean function deciding whether a given polynomial over \( \mathbb{F}_2 \) is squarefree. We obtain an exponential lower bound on the size of a decision tree for this function, and derive an asymptotic formula, having a linear main term, for its average sensitivity. This allows us to estimate other complexity characteristics such as the formula size, the average decision tree depth and the degrees of exact and approximative polynomial representations of this function. Finally, using a different method, we show that testing squarefreeness and irreducibility of polynomials over \( \mathbb{F}_2 \) cannot be done in \( \textrm{AC}^0[p] \) for any odd prime p. Similar results are obtained for deciding coprimality of two polynomials over \( \mathbb{F}_2 \) as well.

Keywords.

((no keywords)) 

Mathematics Subject Classification (2000).

((no classification)) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser-Verlag 2003

Authors and Affiliations

  1. 1.Department of Computer ScienceRutgers UniversityPiscatawayUSA
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly
  3. 3.Institut für Numerische und Angewandte MathematikUniversität GöttingenGöttingenGermany
  4. 4.Fakultät für Elektrotechnik, Informatik und MathematikUniversität PaderbornPaderbornGermany
  5. 5.Mathematics DepartmentRutgers UniversityPiscatawayUSA
  6. 6.Department of ComputingMacquarie UniversityAustralia

Personalised recommendations