Alpine Botany

, Volume 129, Issue 1, pp 21–31 | Cite as

Genotyping-by-sequencing (GBS), ITS and cpDNA phylogenies reveal the existence of a distinct Pyrenean/Cantabrian lineage in the European high mountain genus Homogyne (Asteraceae) and imply dual westward migration of the genus

  • Michael A. Gerschwitz-EidtEmail author
  • Joachim W. Kadereit
Original Article


Quaternary climatic oscillations have been a major factor in shaping plant diversity and distribution in the European Alpine System (EAS). Plants responded to these oscillations with repeated changes in their abundance and geographical distribution. However, oscillating shifts in geographical distribution have only rarely been reported in molecular analyses of genetic variation across the EAS. Homogyne, a genus endemic to the EAS, contains three species. While H. discolor and H. sylvestris are confined to the periphery of the Eastern Alps, H. alpina is widespread across the EAS. In phylogenetic reconstructions of a broad sample of Homogyne using DNA sequence data sets of the nuclear ribosomal internal transcribed spacer (ITS), plastid DNA (ndhF-rpl32, rpl32-trnL, psbA-trnH) and genotyping-by-sequencing (GBS), accessions of H. alpina from the Pyrenees and the Cantabrian Mts. form a clade which groups in conflicting positions. While the exact relationship of this Pyrenean/Cantabrian clade of H. alpina remains unclear, our data clearly imply that this clade is a lineage distinct from the remaining accessions of H. alpina (H. alpina s.str.). An ancestral area analysis unambiguously revealed the Eastern Alps as the ancestral area of the genus. Considering that relationships within H. alpina s.str. clearly illustrate East to West expansion, the identification of a Pyrenean/Cantabrian clade implies that westward expansion from an ancestral area in the Eastern Alps took place twice in the genus. Although the extant distributions of the Pyrenean/Cantabrian clade and H. alpina s.str. are mutually exclusive, plastid DNA evidence may imply past contact and hybridization between the two clades.


Ancestral area reconstruction Extinction Long-distance dispersal Vicariance Repeated range expansion 



We would like to thank Abigail J. Moore (Norman/Oklahoma) and Markus S. Dillenberger (Mainz/Germany) for help with obtaining and analyzing the GBS dataset, M.S. Dillenberger, Simone Steffen (Mainz/Germany), Li-Bing Zhang (St. Louis/Missouri), Hans-Peter Comes (Salzburg/Austria), Christian Uhink (Mainz/Germany) and Matthias Kropf (Vienna/Austria) for collecting material in the field, the curators of BC for permission for using leaf material for DNA analysis, A.J. Moore and H.P. Comes (Salzburg/Austria) as well as two reviewers for very helpful comments on an earlier draft of this manuscript, and Peter Schönswetter (Innsbruck/Austria), Gonzalo Nieto Feliner (Madrid/Spain), Keith D. Bennett (St. Andrews/UK) and Christian Brochmann (Oslo/Norway) for directing us to relevant literature. Financial support by Deutsche Forschungsgemeinschaft (KA 635/8) and Johannes Gutenberg-Universität Mainz is gratefully acknowledged.

Author contributions

JWK designed the research, MAG-E conducted data collection and analyses, and JWK and MAG-E wrote the manuscript.


This study was funded by grants from the Deutsche Forschungsgemeinschaft (KA 635/8) and Johannes Gutenberg-Universität Mainz to Joachim W. Kadereit.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Data availability

The datasets generated and analyzed during the current study are available in Genbank and the European Nucleotide Archive (accessions see ESM_1) and TreeBASE (

Supplementary material

35_2018_212_MOESM1_ESM.docx (26 kb)
Online Resource 1 Taxa used in the analyses, together with sample and voucher information and Genbank and INSDC accession numbers (DOCX 26 KB)
35_2018_212_MOESM2_ESM.docx (94 kb)
Online Resource 2 Phylogenies of Homogyne obtained by maximum parsimony, maximum likelihood and SVDquartets based on genotyping-by-sequencing data. Bootstrap support values are indicated next to the corresponding nodes (DOCX 93 KB)


  1. Bennett KD (1997) Evolution and ecology. The pace of life. Cambridge University Press, CambridgeGoogle Scholar
  2. Blattner F (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27:1180–1186CrossRefPubMedGoogle Scholar
  3. Bock DG, Kane NC, Ebert DP, Rieseberg LH (2014) Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol 201:1021–1030. CrossRefPubMedGoogle Scholar
  4. Casazza G, Grassi F, Zecca G, Minuto L (2016) Phylogeographic insights into a peripheral refugium: the importance of cumulative effect of glaciation on the genetic structure of two endemic plants. PLoS One 11:e0166983. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chifman J, Kubatko L (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–3324. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chifman J, Kubatko L (2015) Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. J Theor Biol 374:35–47CrossRefPubMedGoogle Scholar
  7. Dillenberger MS, Kadereit JW (2017) Simultaneous speciation in the European high mountain flowering plant genus Facchinia (Minuartia sl, Caryophyllaceae) revealed by genotyping-by-sequencing. Mol Phylogenet Evol 112:23–35. CrossRefPubMedGoogle Scholar
  8. Dixon CJ, Schönswetter P, Schneeweiss GM (2007) Traces of ancient range shifts in a mountain plant group (Androsace halleri complex, Primulaceae). Mol Ecol 16:3890–3901. CrossRefPubMedGoogle Scholar
  9. Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–105. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Edwards EJ, Donoghue MJ (2013) Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. J Exp Bot 64:4047–4052. CrossRefPubMedGoogle Scholar
  11. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gussarova G, Allen GA, Mikhaylova Y, McCormick LJ, Mirré V, Marr KL, Hebda RJ, Brochmann C (2015) Vicariance, long-distance dispersal, and regional extinction–recolonization dynamics explain the disjunct circumpolar distribution of the arctic-alpine plant Silene acaulis. Am J Bot 102:1703–1720. CrossRefPubMedGoogle Scholar
  13. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Lin Soc 58:247–276CrossRefGoogle Scholar
  14. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc B 359:183–195CrossRefGoogle Scholar
  15. Hewitt GM, Ibrahim KM (2001) Inferring glacial refugia and historical migrations with molecular phylogenies. In: Silvertown J, Antonovics Janis (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 271–294Google Scholar
  16. Krähenbühl M, Küpfer P (1992) Mediterranean chromosome numbers reports 2 (92–97). Flora Mediterranea 2:255–258Google Scholar
  17. Kropf M, Comes HP, Kadereit JW (2006) Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol 172:169–184. CrossRefPubMedGoogle Scholar
  18. Kück P, Longo GC (2014) FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 11:81. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kuzmanov BA, Georgieva SB, Nikolova VA (1986) Chromosome numbers of Bulgarian flowering plants. I. Fam. Asteraceae. Fitologija 31:71–74Google Scholar
  20. Lang G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. G. Fisher, JenaGoogle Scholar
  21. Losa TM, Montserrat P (1954) Nueva aportación al estudio de la flora de los montes cántabro-leoneses. Anales Inst. Bot. Cavanilles 11:385–462Google Scholar
  22. Love A, Connor HE (1982) Relationships and taxonomy of New Zealand wheat grasses. NZ J Bot 20:169–186CrossRefGoogle Scholar
  23. Merxmüller H (1952) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Teil 1. Jahrbuch des Vereins zum Schutze der Alpenpflanzen 17:96–133Google Scholar
  24. Meusel H, Bräutigam S, Jäger EJ (1992) Vergleichende Chorologie der zentraleuropäischen Flora. Fischer, StuttgartGoogle Scholar
  25. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway computing environments workshop (GCE), New Orleans, pp 1–8.
  26. Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. J Biogeogr 34:2100–2114. CrossRefGoogle Scholar
  27. Ozenda P (1988) Die Vegetation der Alpen im Europäischen Gebirgsraum. Fischer, StuttgartGoogle Scholar
  28. Pashuk KT (1987) Chromosome numbers in species of subalpine bet of Chernogora (Ukrainian Carpatians). Botanicheskii Zhurnal 72:1069–1074Google Scholar
  29. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-nodel species. PLoS One 7:e37135. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Puşcaş M, Choler P, Tribsch A, Gielly L, Rioux D, Gaudeul M, Taberlet P (2008) Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol Ecol 17:2417–2429. CrossRefPubMedGoogle Scholar
  31. Rivas-Martínez S, Díaz TE, Fernández-Gonzáles F, Izco J, Loidi J, Lousã M, Penas A (2002) Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Part II. Itinera Geobotanica 15:433–922Google Scholar
  32. Ronikier M, Schneeweiss GM, Schönswetter P (2012) The extreme disjunction between Beringia and Europe in Ranunculus glacialis sl (Ranunculaceae) does not coincide with the deepest genetic split—a story of the importance of temperate mountain ranges in arctic–alpine phylogeography. Mol Ecol 21:5561–5578. CrossRefPubMedGoogle Scholar
  33. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefPubMedGoogle Scholar
  34. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555. CrossRefPubMedGoogle Scholar
  35. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288CrossRefPubMedGoogle Scholar
  36. Silvertown J (2004) The ghost of competition past in the phylogeny of island endemic plants. J Ecol 92:168–173CrossRefGoogle Scholar
  37. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771. CrossRefPubMedGoogle Scholar
  39. Steffen S, Dillenberger MS, Kadereit JW (2016) Of dwarfs and giants: phylogeny of the Petasites-clade (Asteraceae–Senecioneae) and evolution of miniaturization in arctic–alpine environments. Plant Syst Evol 302:545–559. CrossRefGoogle Scholar
  40. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  41. Taberlet P, Cheddadi R (2003) Quaternary refugia and persistence of biodiversity. Science 297:2009–2010CrossRefGoogle Scholar
  42. Tribsch A (2004) Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J Biogeogr 31:747–760CrossRefGoogle Scholar
  43. Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52:477–497CrossRefGoogle Scholar
  44. Wagenitz G, Hegi G, Conert HJ (eds) (1987) Illustrierte Flora von Mitteleuropa: Mit besonderer Berücksichtigung von Deutschland, Österreich und der Schweiz; zum Gebrauche in den Schulen und zum Selbstunterricht: [Compositae II: Matricaria—Hieracium], 2., überarb. und erw. Aufl. (um einen Nachtr., Berichtigungen, Erg. und neue Literaturangaben erw. Nachdr. der 1. Aufl. des Bd. VI/2), Teil 4: Bd. 6, Spermatophyta: Angiospermae: Dicotyledones 4. [Compositae II: Matricaria—Hieracium]. Parey, Berlin, HamburgGoogle Scholar
  45. Waters JM (2011) Competitive exclusion: phylogeography’s ‘elephant in the room’? Mol Ecol 20:4388–4394. CrossRefPubMedGoogle Scholar
  46. Webb T III, Bartlein PJ (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Annu Rev Ecol Syst 23:141–173CrossRefGoogle Scholar
  47. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  48. Yu Y, Harris AJ, He X (2010) S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56:848–850CrossRefPubMedGoogle Scholar
  49. Yu Y, Harris AJ, Blair C, He X (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol 87:46–49CrossRefPubMedGoogle Scholar

Copyright information

© Swiss Botanical Society 2018

Authors and Affiliations

  1. 1.Institut für Organismische und Molekulare EvolutionsbiologieJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations