Advertisement

Alpine Botany

, Volume 128, Issue 2, pp 97–106 | Cite as

The highest vascular plants on Earth

  • Cédric DentantEmail author
Short Communication

Abstract

Mountaineering, since the beginning of its history, has played an inconspicuous but key role in the collection of species samples at the highest elevations. During two historical expeditions undertaken to reach the summit of Mount Everest in 1935 and 1952, mountaineers collected five species of vascular plants from both the north and south sides of the mountain, at ca. 6400 m a.s.l. Only one of these specimens was determined immediately following the expedition (Saussurea gnaphalodes), and the remaining four were not identified until quite recently. In 2000, the second specimen from the 1935 expedition was described as a new species for science (Lepidostemon everestianus), endemic to Tibet. In this paper, the remaining three specimens from the 1952 Everest expedition are reviewed and analysed, bringing the number of species sharing the title of “highest known vascular plant” from two to five. I identify one of the 1952 specimens as Arenaria bryophylla, and describe two novel taxa based on analysis of the herbarium records: Saxifraga lychnitis var. everestianus and Androsace khumbuensis. Although elevation records on their own do not inform us about the ecological conditions and physiological capacity of plants at the upper limit of their distribution, this taxonomic investigation contributes to our knowledge of the biogeography of Himalayan flora and opens the way for future field-based investigations of mechanisms limiting plant growth on the roof of the world.

Keywords

Vascular plants Lepidostemon everestianus Androsace khumbuensis Mountaineering High elevation Everest Himalaya 

Notes

Acknowledgements

I would like to acknowledge the herbarium curators who provided a decisive assistance for this study: Fred Stauffer and Laurent Gauthier (Conservatory and Botanical Garden of Geneva, G); Ranee Prakash (Natural History Museum of London, BM). I would also thank Fabien Anthelme and Hannah Marx for their advice for improving the manuscript. And finally a special thanks to Sonja Wipf for her indefatigable support and to Brad Carlson for his invaluable contribution in refining the manuscript.

Author contributions

C. Dentant analysed herbarium records at the Conservatory and Botanical Garden of Geneva and the British Museum, carried out research on historical expeditions to Mount Everest and wrote the paper.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Supplementary material

35_2018_208_MOESM1_ESM.pdf (4.6 mb)
ESM_1 Herbarium specimen of Saussurea gnaphalodes (BM[000803807]) collected during the 1935 Everest expedition. Photo: Ranee Prakash (BM) (PDF 4675 KB)
35_2018_208_MOESM2_ESM.pdf (4.7 mb)
ESM_2 Holotype of Lepidostemon everestianus (BM[000587908]), specimen collected during the 1935 Everest expedition. Photo: Ranee Prakash (BM) (PDF 4829 KB)
35_2018_208_MOESM3_ESM.pdf (5.2 mb)
ESM_3 Herbarium specimen of Arenaria bryophylla (G[G00429530]) collected during the 1952 Everest expedition. Photo: G (PDF 5281 KB)
35_2018_208_MOESM4_ESM.pdf (5.5 mb)
ESM_4 Holotype of Saxifraga lychnitis var. everestianus (G[G00429528]), specimen collected during the 1952 Everest expedition. Photo: G (PDF 5583 KB)
35_2018_208_MOESM5_ESM.pdf (6.8 mb)
ESM_5 Holotype of Androsace khumbuensis (G[G00429529]), specimen collected during the 1952 Everest expedition. Photo: G (PDF 6951 KB)

References

  1. Aeschimann D, Rasolofo N, Theurillat JP (2011) Analyse de la flore des Alpes. 1: historique et biodiversité. Candollea 66:27–55CrossRefGoogle Scholar
  2. Akiyama S, Gomall RJ, Adhikari B et al (2012) Saxifragaceae. In: Flora of Nepal (floraofnepal.org). Royal Botanical Garden Edinburg. http://www.floraofnepal.org. Accessed 2017
  3. APG IV (2016) [Angiosperm Phylogeny Group] An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20.  https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x CrossRefGoogle Scholar
  4. Al-Shehbaz IA (2000) Lepidostemon (Brassicaceae) is no longer monotypic. Novon 10:329–333CrossRefGoogle Scholar
  5. Angel R, Conrad R, Dvorsky M et al (2016) The root-associated microbial community of the world’s highest growing vascular plants. Microb Ecol 72:394–406.  https://doi.org/10.1007/s00248-016-0779-8 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aubert S, Boucher F, Lavergne S et al (2014) 1914–2014: a revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alp Bot 124:59–70.  https://doi.org/10.1007/s00035-014-0127-x CrossRefGoogle Scholar
  7. Baehni C (1958) Résultats des expéditions scientifiques genevoises au Népal en 1952 et 1954 (partie botanique).13. Juglandaceae, Santalaceae, Thymelaeaceae et Saxifragaceae. Candollea 16:215–227Google Scholar
  8. Bajracharya DM (1996) Phyto-geography of Nepal Himalaya. Tribhuvan Univ J 19:57–76Google Scholar
  9. Ball J (1860) Suggestions for Alpine Travellers. In: Ball J (ed) Peaks, passes and glaciers, 5th edn. Longman, Green, Longman & Roberts, LondonGoogle Scholar
  10. Boucher FC, Thuiller W, Roquet C et al (2012) Reconstructing the origins of high-alpine niches and cushion life form in the genus Androsace s.l. (Primulaceae). Evolution 66:1255–1268.  https://doi.org/10.1111/j.1558-5646.2011.01483.x CrossRefPubMedGoogle Scholar
  11. Boucher FC, Lavergne S, Basile M et al (2016) Evolution and biogeography of the cushion life form in angiosperms. Perspect Plant Ecol Evol Syst 20:22–31.  https://doi.org/10.1016/j.ppees.2016.03.002 CrossRefGoogle Scholar
  12. Breckle SW, Fayvusch G, Murtazaliev R, Nakhutsrishvili G (2017) Floristic analysis of the subnival-nival vegetation of Hindu Kush and Caucasus. Bielef Ökologische Beitr 21:7–31Google Scholar
  13. Carlson BZ, Corona MC, Dentant C et al (2017) Observed long-term greening of alpine vegetation—a case study in the French Alps. Environ Res Lett 12:114006.  https://doi.org/10.1088/1748-9326/aa84bd CrossRefGoogle Scholar
  14. Carret M (1880) Note sur quelques plantes trouvées au pic de la Meije. Ann Soc Bot Lyon 7:171–176CrossRefGoogle Scholar
  15. De Saussure H-B (1779–1796). Voyage dans les Alpes. Samuel Fauche (tome I), Geneva; Barde, Manget & Compagnie (tome II), Geneva; Louis Fauche-Borel (tomes III and IV), GenevaGoogle Scholar
  16. Dentant C (2017) Flora verticalis. Editions Le Naturographe, GapGoogle Scholar
  17. Dolezal J, Dvorsky M, Kopecky M et al (2016) Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci Rep 6:1–13.  https://doi.org/10.1038/srep24881 CrossRefGoogle Scholar
  18. Dvorský M, Altman J, Kopecký M et al (2015) Vascular plants at extreme elevations in eastern Ladakh, northwest Himalayas. Plant Ecol Divers 8:571–584.  https://doi.org/10.1080/17550874.2015.1018980 CrossRefGoogle Scholar
  19. Dvorský M, Chlumská Z, Altman J et al (2016) Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Sci Rep 6:1–10.  https://doi.org/10.1038/srep24440 CrossRefGoogle Scholar
  20. efloras.org (2008) Flora of China. Missouri Botanical Garden. MO & Harvard University Herbaria, St Louis. Cambridge, MA. http://www.efloras.org. Accessed 2017
  21. Engler R, Randin CF, Thuiller W et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Chang Biol 17:2330–2341.  https://doi.org/10.1111/j.1365-2486.2010.02393.x CrossRefGoogle Scholar
  22. German DA, Al-Shehbaz IA (2010) Nomenclatural novelties in miscellaneous Asian Brassicaceae (Cruciferae). Nord J Bot 28:646–651.  https://doi.org/10.1111/j.1756-1051.2010.00983.x CrossRefGoogle Scholar
  23. Gottfried M, Pauli H, Futschik A et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115.  https://doi.org/10.1038/nclimate1329 CrossRefGoogle Scholar
  24. Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS, Körner Ch (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin, Heidelberg, New York, pp 167–181Google Scholar
  25. Halloy S (1991) Islands of life at 6000 m altitude—the environment of the highest autotrophic communities on Earth (Socompa Volcano, Andes). Arct Alp Res 23:247–262.  https://doi.org/10.2307/1551602 CrossRefGoogle Scholar
  26. Hu Q, Kelso S (2008) Primulaceae. In: Flora of China (efloras.org). Missouri Botanical Garden. MO & Harvard University Herbaria, St Louis. Cambridge, MA. http://www.efloras.org. Accessed 2017
  27. Jordan D (2015) Atlas de la flore rare ou menacée de Haute-Savoie. Naturalia Publications, TurriersGoogle Scholar
  28. Kammer PM, Schöb C, Choler P (2007) Increasing species richness on mountain summits: Upward migration due to anthropogenic climate change or re-colonisation? J Veg Sci 18:301–306.  https://doi.org/10.1111/j.1654-1103.2007.tb02541.x CrossRefGoogle Scholar
  29. Klimeš L, German D (2009) Draba alshehbazii (Brassicaceae), a new species from extreme altitudes of eastern Ladakh (Jammu and Kashmir, India). Bot J Linn Soc 158:749–754.  https://doi.org/10.1111/j.1095-8339.2008.00933.x CrossRefGoogle Scholar
  30. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  31. Körner C (2011) Coldest places on earth with angiosperm plant life. Alp Bot 121:11–22.  https://doi.org/10.1007/s00035-011-0089-1 CrossRefGoogle Scholar
  32. Marx HE, Dentant C, Renaud J et al (2017) Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J Biogeogr 44:2618–2630.  https://doi.org/10.1111/jbi.13073 CrossRefPubMedGoogle Scholar
  33. Miehe G (1987) An annotated list of vascular plants collected in the valleys south of Mt Everest. Bull Brit Mus Nat Hist 16:225–268Google Scholar
  34. Miehe G (1988) Vegetation patterns on Mount Everest as influenced by monsoon and föhn. Vegetatio 79:21–32.  https://doi.org/10.1007/BF00044845 CrossRefGoogle Scholar
  35. Miehe G (1991) Der Himalaya, eine multizonale Gebirgsregion. In: Walter H, Breckle SW (eds) Ökologie der Erde, vol 4. Fischer, Stuttgart, pp 181–230Google Scholar
  36. Morueta-Holme N, Engemann K, Sandoval-Acuña P et al (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci 112:12741–12745.  https://doi.org/10.1073/pnas.1509938112 CrossRefPubMedGoogle Scholar
  37. Polunin O, Stainton A (1997) Flowers of Himalaya. Oxford University Press, OxfordGoogle Scholar
  38. Roch A (1952) Everest 1952. Jeheber, GenevaGoogle Scholar
  39. Roquet C, Boucher FC, Thuiller W, Lavergne S (2013) Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. J Biogeogr 40:1874–1886.  https://doi.org/10.1111/jbi.12135 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schönswetter P, Schneeweiss GM (2009) Androsace komovensis sp. nov., a long mistaken local endemic from the southern Balkan Peninsula with biogeographic links to the Eastern Alps. Taxon 58:544–549Google Scholar
  41. Shi Z, von Raab-Straube E (2008) Saussurea. In: Flora of China (efloras.org). Missouri Botanical Garden. MO & Harvard University Herbaria, St Louis. Cambridge, MA. http://www.efloras.org. Accessed 2017
  42. Shipton EE (1936) The Mount Everest reconnaissance, 1935. Himal J 8Google Scholar
  43. Shrestha KK, Press R (2008) Annotated Checklist of the Flowering Plants of Nepal. In: efloras.org. Missouri Botanical Garden. MO & Harvard University Herbaria, St Louis. Cambridge, MA. http://www.efloras.org. Accessed 2017
  44. Steinbauer MJ, Grytnes J-A, Jurasinski G et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature.  https://doi.org/10.1038/s41586-018-0005-6 CrossRefPubMedGoogle Scholar
  45. Swan LW (1992) The Aeolian Biome. Ecosystems of the earth’s extremes. Bioscience 42:262–270CrossRefGoogle Scholar
  46. von Raab-Straube E (2011) The genus Saussurea (Compositae, Cardueae) in China: taxonomic and nomenclatural notes. Willdenowia 41:83–95.  https://doi.org/10.3372/wi.41.41109 CrossRefGoogle Scholar
  47. von Humboldt A, Bonpland A (1805) Essai sur la géographie des plantes. Levrault, Shoell et compagnie, ParisGoogle Scholar
  48. Weibel R (1956) Résultats des expéditions scientifiques genevoises au Népal en 1952 et 1954 (partie botanique).4. Primulaceae. Candollea 15:157–165Google Scholar
  49. Whymper E (1871) Scrambles amongst the Alps in the years 1860–1869. John Murray, LondonGoogle Scholar
  50. Wipf S, Stöckli V, Herz K, Rixen C (2013) The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol Divers 6:447–455.  https://doi.org/10.1080/17550874.2013.764943 CrossRefGoogle Scholar
  51. Zhengyi W, Wagner WL (2008) Arenaria. In: Flora of China (efloras.org). Missouri Botanical Garden. MO & Harvard University Herbaria, St Louis. Cambridge, MA. http://www.efloras.org. Accessed 2017
  52. Zimmermann A (1952) Botanique. In: Lobsiger-Dellenbach M, Lombard A, Zimmermann A (eds) Himalaya du Népal. Expédition scientifique genevoise. Jeheber, GenevaGoogle Scholar

Copyright information

© Swiss Botanical Society 2018

Authors and Affiliations

  1. 1.Ecrins National ParkGapFrance

Personalised recommendations