Alpine Botany

, Volume 128, Issue 2, pp 121–132 | Cite as

Frequent occurrence of triploid hybrids Festuca pratensis × F. apennina in the Swiss Alps

  • David KopeckýEmail author
  • Tamina Felder
  • Franz X. Schubiger
  • Václav Mahelka
  • Jan Bartoš
  • Jaroslav Doležel
  • Beat Boller
Original Article


The occurrence of triploid hybrids in nature is scarce due to the so-called triploid block representing formation of nonviable progeny after mating diploid with tetraploid. Here we describe frequent presence of triploids originating from hybridization of diploid Festuca pratensis with tetraploid F. apennina in the Swiss Alps. F. pratensis is a forage grass grown in lowlands and up to 1800 m a.s.l., while F. apennina is a mountain grass found in elevations from 1100 to 2000 m a.s.l. In the overlapping zone these species often grow sympatrically and triploid hybrids have been observed. We show that elevation is the main factor in the distribution of plants with various ploidy levels. Diploids occupy lower elevations, while triploids predominate in the mid-elevation zones and tetraploids are the most frequent in higher elevations. Other factors, such as topography and soil composition probably have only marginal effects on the distribution of the plants with different ploidy levels. Triploids seem to be frequently formed in the Swiss Alps and crosses in both directions are involved in the formation of triploid hybrids. As shown by chloroplast DNA analysis, F. apennina more frequently serves as female. Our analysis suggests that in the mid-elevation zones, triploids have a higher level of competitiveness than both parents. Triploids can overgrow microhabitats to a much higher extent than tetraploids. Such frequent occurrence and local dominance of triploids can at least be partially explained by asexual reproduction. Using DNA markers, we show that triploids can disperse ramets of a single clone over a distance of at least 14.4 m.


Asexual reproduction Triploid Grass Festuca Hybrid Clonality Fescue 



We would like to express our thanks to Prof. Adam J. Lukaszewski for critical reading and valuable comments on the manuscript. Special thanks belong to the team of Diversity Arrays Ltd. lead by Dr. Andrzej Kilian for their help in processing the data on analysis of clonality and Dr. Jan Vrána and Eva Jahnová for technical assistance on flow cytometry measurements. We greatly appreciated the support of Dr. Manuel Schneider in identifying suitable sampling locations, and we wish to thank Cheng Zhao for technical assistance.

Author contributions

TF, FXS and BB sampled the specimens, DK and JD conducted flow cytometry measurements, VM performed chloroplast DNA analysis, DK and JB analyzed clonality using Diversity Arrays Technology, TF, FXS and BB realized soil analysis, DK drafted the manuscript, BB and JD revised manuscript critically for important intellectual content.


This study was partially funded by the grant award LO1204 from the National Program of Sustainability I. and the Czech Academy of Sciences Long-Term Research Development Project RVO 67985939.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

35_2018_204_MOESM1_ESM.tif (6.1 mb)
Maps of study areas in Switzerland. The three localities are Stockberg, ct. St. Gallen, Lachenalp, ct. Glarus and Glaubenbielen, ct. Obwalden. The sample sites of each locality are highlighted with yellow (1345-1373 m a.s.l.), orange (1492-1575 m a.s.l.) and red (1673-1856 m a.s.l.) dots. Source: PK50 ©swisstopo (TIF 6279 KB)
35_2018_204_MOESM2_ESM.xls (36 kb)
GPS coordinates of the localities used in this study (MS Excel spreadsheet document .xls) (XLS 36 KB)
35_2018_204_MOESM3_ESM.xls (38 kb)
The distribution of diploids, triploids and tetraploids based on locality, elevation, topography and microhabitats supplemented with the data on soil composition and pH and the abundance of Festuca in vegetation (MS Excel spreadsheet document .xls) (XLS 38 KB)


  1. Agroscope (2015) Schweizerische Referenzmethoden der For­schungsanstalten Agroscope, Band 1: bodenuntersuchungen zur Düngeberatung, Ausgabe 2015. Agroscope, ZürichGoogle Scholar
  2. Aleza P, Juarez J, Hernandez M, Ollitrault P, Navarro L (2012) Implementation of extensive citrus triploid breeding programs based on 4X × 2X sexual hybridisations. Tree Genet Genom 8:1293–1306CrossRefGoogle Scholar
  3. Alix K, Gerard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194CrossRefGoogle Scholar
  4. Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manage 62:1165–1183CrossRefGoogle Scholar
  5. Baird JH, Kopecký D, Lukaszewski AJ, Green RL, Bartoš J, Doležel J (2012) Genetic diversity of turf-type tall fescue using diversity arrays technology. Crop Sci 52:408–412CrossRefGoogle Scholar
  6. Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves R, Burdon JJ (eds) Ecology of biological invasions, an Australian perspective. Australian Academy of Sciences, Canberra, pp 21–33Google Scholar
  7. Boller B, Felder T, Kopecký D (2018) Tetraploid Festuca apennina is prone to produce triploid hybrid progeny when crossed with diploid Festuca pratensis. In: Brazauskas G et al (eds) Breeding grasses and protein crops in the era of genomics. Springer, Cham. CrossRefGoogle Scholar
  8. Borrill M, Tyler BF, Morgan WG (1976) Studies in Festuca. 7. Chromosome atlas. 2. Appraisal of chromosome race distribution and ecology, including Festuca pratensis var. apennina (DeNot) Hack.—tetraploid. Cytologia 41:219–236CrossRefGoogle Scholar
  9. Budzakova M, Hodalova I, Mereda P, Somlyay L, Bisbing SM, Sibik J (2014) Karyological, morphological and ecological differentiation of Sesleria caerulea and S. tatrae in the Western Carpathians and adjacent regions. Preslia 86:245–277Google Scholar
  10. Clarke J, Chandrasekharan P, Thomas H (1976) Studies in Festuca. 9. Cytological studies of Festuca pratensis var. apennina (DeNot.) Hack. (2n = 28). Z Pflanzenzuchtg 77:205–214Google Scholar
  11. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846CrossRefGoogle Scholar
  12. Cushman KE, Snyder RG, Nagel DH, Gerard PD (2003) Yield and quality of triploid watermelon cultivars and experimental hybrids grown in Mississippi. Horttechnology 13:375–380Google Scholar
  13. Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26CrossRefGoogle Scholar
  14. Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244CrossRefGoogle Scholar
  15. Eckert CG (2002) Effect of geographical variation in pollinator fauna on the mating system of Decodon verticillatus (Lythraceae). Int J Plant Sci 163:123–132CrossRefGoogle Scholar
  16. Fjellheim S, Rognli OA, Fosnes K, Brochmann C (2006) Phylogeographical history of the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478CrossRefGoogle Scholar
  17. Grabherr G (2003) Alpine vegetation dynamics and climate change: a synthesis of long-term studies and observations. Alpine Divers Europe 167:399–409CrossRefGoogle Scholar
  18. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  19. Gusmeroli F, Della Marianna G, Fava F, Monteiro A, Bocchi S, Parolo G (2013) Effects of ecological, landscape and management factors on plant species composition, biodiversity and forage value in Alpine meadows. Grass Forage Sci 68:437–447CrossRefGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  21. Harberd DJ, Owen M (1969) Some experimental observations on clone structure of a natural population of Festuca rubra L. New Phytol 68:93–104CrossRefGoogle Scholar
  22. Hoshino Y, Miyashita T, Thomas TD (2011) In vitro culture of endosperm and its application in plant breeding: approaches to polyploidy breeding. Sci Hortic 130:1–8CrossRefGoogle Scholar
  23. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:e25CrossRefGoogle Scholar
  24. Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–113CrossRefGoogle Scholar
  25. Jonsdottir IS, Augner M, Fagerstrom T, Persson H, Stenstrom A (2000) Genet age in marginal populations of two clonal Carex species in the Siberian Arctic. Ecography 23:402–412CrossRefGoogle Scholar
  26. Kleijn D, Steinger T (2002) Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. J Ecol 90:360–370CrossRefGoogle Scholar
  27. Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Doležel J, Kilian A (2009) Development and mapping of DArT markers within the FestucaLolium complex. BMC Genom 10:473–483CrossRefGoogle Scholar
  28. Kopecký D, Bartoš J, Christelová P, Černoch V, Kilian A, Doležel J (2011) Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array. Theor Appl Genet 122:355–363CrossRefGoogle Scholar
  29. Kopecký D, Harper J, Bartoš J, Gasior D, Vrána J, Hřibová E, Boller B, Ardenghi NMG, Šimoníková D, Doležel J, Humphreys MW (2016) An increasing need for productive and stress resilient Festulolium amphiploids: what can be learnt from the stable genomic composition of Festuca pratensis subsp. apennina (De Not.) Hegi? Frontiers Env Sci 4:66CrossRefGoogle Scholar
  30. Lakshmi Sita G (1987) Triploids. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Forestry sciences. Springer, Dordrecht, vol 24–26Google Scholar
  31. Lammerts WE (1931) Interspecific hybridization in Nicotiana. XII. The amphidiploid rustica-paniculata hybrid; its origin and cytogenetic behavior. Genetics 16:191–211PubMedPubMedCentralGoogle Scholar
  32. Lohaus R, Van de Peer Y (2016) Of dups and dinos: evolution at the K/Pg boundary. Curr Opin Plant Biol 30:62–69CrossRefGoogle Scholar
  33. Loureiro I, Escorial MC, Chueca MC (2016) Pollen-mediated movement of herbicide resistance genes in Lolium rigidum. Plos One 11:6CrossRefGoogle Scholar
  34. Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104CrossRefGoogle Scholar
  35. Markgraf-Dannenberg I (1980) 4. Festuca L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 5. Cambridge University Press, Cambridge, pp 125–153Google Scholar
  36. Marques I, Draper D, López-Herranz ML, Garnatje T, Segarra-Moragues JG, Catalán P (2016) Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae). Sci Rep 6:36283CrossRefGoogle Scholar
  37. Masterson J (1994) Stomatal size in fossil plants—evidence for polyploidy in majority of angiosperms. Science 264:421–424CrossRefGoogle Scholar
  38. Novak SJ, Welfley AY (1997) Genetic diversity in the introduced clonal grass Poa bulbosa (Bulbous bluegrass). Northwest Sci 71:271–280Google Scholar
  39. Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108–1115CrossRefGoogle Scholar
  40. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  41. Rognli OA, Nilsson NO, Nurminiemi M (2000) Effects of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 85:550–560CrossRefGoogle Scholar
  42. Rognli OA, Saha MC, Bhamidimarri S, van der Heijden S (2010) Fescues. Fodd Crops Amenity Grass 5:261–292CrossRefGoogle Scholar
  43. Saint-Yves A (1913) Les Festuca de la Section Eu-Festuca et leurs variations. Georg, Geneva. CrossRefGoogle Scholar
  44. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588CrossRefGoogle Scholar
  45. Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165CrossRefGoogle Scholar
  46. Stebbins GL (1940) The significance of polyploidy in plant evolution. Am Nat 74:54–66CrossRefGoogle Scholar
  47. Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91(861):337–354CrossRefGoogle Scholar
  48. Stebler FG (1904) Jahresbericht der Schweizerischen Samenuntersuchungs- und Kontrollstation Zürich. Schweiz Landw Jahrbuch 18:43–46Google Scholar
  49. Suda J (2002) New DNA ploidy level in Empetrum (Empetraceae) revealed by flow cytometry. Ann Bot Fenn 39(2):133–141Google Scholar
  50. Suzuki J-U, Herben T, Krahulec F, Štorchová H, Hara T (2006) Effects of neighbourhood structure and tussock dynamics on genet demography of Festuca rubra in a mountain meadow. J Ecol 94:66–76CrossRefGoogle Scholar
  51. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefGoogle Scholar
  52. Tamura K, Uwatoko N, Yamashita H, Fujimori M, Akiyama Y, Shoji A et al (2016) Discovery of natural interspecific hybrids between Miscanthus Sacchariflorus and Miscanthus Sinensis in Southern Japan: morphological characterization, genetic structure, and origin. Bioenerg Res 9:315–325CrossRefGoogle Scholar
  53. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesova M et al (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45CrossRefGoogle Scholar
  54. Torrecilla P, Acedo C, Marques I, Díaz-Pérez AJ, López-Rodríguez JA, Mirones V, Sus A, Llamas F, Alonso A, Pérez-Collazos E, Viruel J, Sahuquillo E, Del Carmen Sancho M, Komac B, Manso JA, Segarra-Moragues JG, Draper D, Villar L, Catalán P (2013) Morphometric and molecular variation in concert: taxonomy and genetics of the reticulate Pyrenean and Iberian alpine spiny fescues (Festuca eskia complex, Poaceae). Bot J Linn Soc 173:676–706CrossRefGoogle Scholar
  55. Tyler BF (1988) Description and distribution of natural variation in forage grasses. In: Proceedings of the Eucarpia fodder crops section meeting, (Lusignan, France), pp 13–22Google Scholar
  56. Tyler B, Borrill M, Chorlton K (1978) Studies in Festuca. 10. Observations on germination and seedling cold tolerance in diploid Festuca pratensis and tetraploid F. pratensis var. apennina in relation to their altitudinal distribution. J Appl Ecol 15:219–226CrossRefGoogle Scholar
  57. Uwatoko N, Tamura K, Yamashita H, Gau M (2016) Naturally occurring triploid hybrids between Miscanthus sacchariflorus and M. sinensis in Southern Japan, show phenotypic variation in agronomic and morphological traits. Euphytica 212:355–370CrossRefGoogle Scholar
  58. Wagenaar EB (1968) Meiotic restitution and origin of polyploidy. 2. Influence of genotype on polyploid seedset in a Triticum crissum × T. turgidum hybrid. Can J Genet Cyt 10:836–843CrossRefGoogle Scholar
  59. WallisDeVries MF, Laca EA, Demment MW (1999) The importance of scale of patchiness for selectivity in grazing herbivores. Oecologia 121:355–363CrossRefGoogle Scholar
  60. Wang ZY, Ge YX, Scott M, Spangenberg G (2004) Viability and longevity of pollen from transgenic and nontransgenic tall fescue (Festuca arundinacea) (Poaceae) plants. Am J Bot 91:523–530CrossRefGoogle Scholar
  61. Wang XL, Cheng ZM, Zhi S, Xu FX (2016) Breeding triploid plants: a review. Czech J Genet Plant 52:41–54CrossRefGoogle Scholar
  62. Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M et al (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. P Natl Acad Sci USA 101:14533–14538CrossRefGoogle Scholar
  63. Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277CrossRefGoogle Scholar
  64. Zhang CH, Zhang SL, Shen SX, Wang M, Wang YH (2001) Observation on obtaining the triploid by 4X × 2X and its cytoembryology in false pakchoi. Acta Hortic Sinica 28:317–322Google Scholar

Copyright information

© Swiss Botanical Society 2018

Authors and Affiliations

  1. 1.Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc-HoliceCzech Republic
  2. 2.Agroscope, Division Plant BreedingZurichSwitzerland
  3. 3.Institute of BotanyThe Czech Academy of SciencesPrůhoniceCzech Republic

Personalised recommendations