Advertisement

Alpine Botany

, Volume 127, Issue 2, pp 185–196 | Cite as

Phylogeography of the moonwort fern Botrychium lunaria (Ophioglossaceae) based on chloroplast DNA in the Central-European Mountain System

  • Alessio MaccagniEmail author
  • Christian Parisod
  • Jason R. Grant
Original Article

Abstract

Botrychium s.s. is a cosmopolitan fern genus comprising about 35 currently recognized species. Despite unexpected high genetic diversity recently highlighted within Botrychium lunaria in the circumboreal region, few studies have included representative samples from Central Europe. Therefore, the aim of this work was to study the phylogeography of B. lunaria in the Central-European Mountain System and to compare it with that of flowering plants. Two noncoding chloroplast regions (psbA-trnH and trnL-F) were sequenced (918 bp) from 87 individuals from 34 populations in the major European mountain chains (Sierra Nevada, Pyrenees, Massif Central, Jura, Vosges, Black Forest, Alps, Apennines, and Carpathians). Among the 24 haplotypes found in the B. lunaria aggregate in Europe, bayesian phylogeny and median-joining network support four main clades (LUN1, LUN2, LUN3, and TUN). NST and GST comparison as well as homogeneous groups indicated by SAMOVA indicate a clear phylogeographical pattern. However, unlinked to geographical distance, genetic diversity is greatest in the Prealps and highlights three main barriers to gene flow: S–N of Central Alps (Aosta-Lepontic Alps), and two separating E–W Alps (Lago di Como-Rhaetian Alps and Dolomites-Noric-Julian Alps). Our results indicate that alpine populations of the B. lunaria aggregate survived the Quaternary glaciations in situ in two main refugia, in the southern and eastern periphery of the Alps. Not only areas with higher values of genetic diversity, but also refugia and sites of geographical boundaries to gene flow, appear similar in both ferns and flowering plants.

Keywords

Alps refugia Barrier to gene flow Fern allies Last glacial maximum (LGM) psbA-trnQuaternary survival trnL-trn

Notes

Acknowledgements

This work was supported by the Fonds des donations of the Université de Neuchâtel. We would like to thank collectors of material: Amadej Trnkoczy (Triglavski, Slovenia), Benjamin Dauphin (Sierra Nevada, Spain), Claudia Danau (Retezat, Romania), Daniel Sandoz and Frédéric A. Sandoz (Dôle, Switzerland), Jozsef Sulyok (Nagy-mezo, Hungary), and Michela N. Meier. We also want to thank Olivier Bachmann and Julien Vieu for their support in the lab and two anonymous reviewers for their insightful comments on the manuscript.

Declaration of authorship

AM and JRG conceived and designed the research. AM conducted the field- and lab-work. AM and CP analyzed the data. All authors contributed to writing and approved the manuscript.

Compliance with ethical stanards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

35_2017_188_MOESM1_ESM.pdf (81 kb)
Supplementary material 1 (PDF 80 kb)
35_2017_188_MOESM2_ESM.pdf (55 kb)
Supplementary material 2 (PDF 55 kb)

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory, pp 267–281. Akademiai Kiado, Budapest, HungaryGoogle Scholar
  2. Barrington DS (1993) Ecological and historical factors in fern biogeography. J Biogeogr 20:275CrossRefGoogle Scholar
  3. Bauert MR, Kälin M, Edwards PJ, Baltisberger M (2007) Genetic structure and phylogeography of alpine relict populations of Ranunculus pygmaeus and Saxifraga cernua. Bot Helv 117:181–196CrossRefGoogle Scholar
  4. Bettin O, Cornejo C, Edwards PJ, Holderegger R (2007) Phylogeography of the high alpine plant Senecio halleri (Asteraceae) in the European Alps: in situ glacial survival with postglacial stepwise dispersal into peripheral areas. Mol Ecol 16:2517–2524CrossRefPubMedGoogle Scholar
  5. Birks HJB (1976) The distribution of European pteridophytes: a numerical analysis. New Phytol 77:257–287CrossRefGoogle Scholar
  6. Brockmann-Jerosch H, Brockmann-Jerosch M (1926) Die Geschichte der Schweizerischen Alpen-flora. In: Schröter C (ed) Das Pflanzenleben der Alpen. Raustein, Zürich, pp 1110–1215Google Scholar
  7. Bystriakova N, Ansell SW, Russell SJ, Grundmann M, Vogel JC, Schneider H (2014) Present, past and future of the European rock fern Asplenium fontanum: combining distribution modelling and population genetics to study the effect of climate change on geographic range and genetic diversity. Ann Bot 113:453–465CrossRefPubMedGoogle Scholar
  8. Chodat R, Pampanini R (1902) Sur la distribution des plantes des Alpes austro-orientales et plus particulièrement d’un choix déplantés des Alpes cadoriques et vénitiennes. Globe Rev Genevoise Géographie 41:63–132CrossRefGoogle Scholar
  9. Comes HP, Kadereit JW (1998) The effect of quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438CrossRefGoogle Scholar
  10. Dauphin B, Farrar DR, Maccagni A, Grant JR (in press) A worldwide molecular phylogeny provides new insight on cryptic diversity within the moonworts (Botrychium s.s., Ophioglossaceae). Syst BotGoogle Scholar
  11. Dauphin B, Vieu J, Grant JR (2014) Molecular phylogenetics supports widespread cryptic species in moonworts (Botrychium s.s., Ophioglossaceae). Am J Bot 101:128–140CrossRefPubMedGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefPubMedGoogle Scholar
  14. Ehlers J, Gibbard PL (2008) Quaternary glaciations: extent and chronology. Development in quaternary science, vol 2. CD. Elsevier, AmsterdamGoogle Scholar
  15. Farrar DR (1998) Population genetics of moonwort Botrychium. In: Berlin N, Miller P, Borovansky J, Seal US, Byers O (eds) Population and habitat viability assessment for the goblin fern (Botrychium mormo), pp 109–113. Final Report. The Conservation Breeding Specialist Group, Apple Valley, Minnesota, USAGoogle Scholar
  16. Farrar DR (2011) Systematics and taxonomy of genus Botrychium. http://www.public.iastate.edu/~herbarium/botrychium/Moonwort-Systematics.pdf
  17. Finsinger W, Tinner W (2007) Pollen and plant macrofossils at Lac de Fully (2135 m asl): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 17:1119–1127CrossRefGoogle Scholar
  18. Hauk WD, Haufler CH (1999) Isozyme variability among cryptic species of Botrychium subgenus Botrychium (Ophioglossaceae). Am J Bot 86:614–633CrossRefPubMedGoogle Scholar
  19. Hauk WD, Kennedy L, Hawke HM (2012) A phylogenetic investigation of Botrychium s.s. (Ophioglossaceae): evidence from three plastid DNA sequence datasets. Syst Bot 37:320–330CrossRefGoogle Scholar
  20. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195CrossRefPubMedPubMedCentralGoogle Scholar
  21. Holderegger R, Thiel-Egenter C, Parisod C (2011) Marie Brockmann-Jerosch and her influence on alpine phylogeography. Alp Bot 121:5–10CrossRefGoogle Scholar
  22. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589PubMedPubMedCentralGoogle Scholar
  23. Hunt HV, Ansell SW, Russell SJ et al (2009) Genetic diversity and phylogeography in two diploid ferns, Asplenium fontanum subsp. fontanum and A. petrarchae subsp. bivalens, in the western Mediterranean. Mol Ecol 18:4940–4954CrossRefPubMedGoogle Scholar
  24. Ivy-Ochs S (2015) Glacier variations in the European Alps at the end of the last glaciation. Cuad Investig Geogr 41:295–315CrossRefGoogle Scholar
  25. Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190CrossRefPubMedGoogle Scholar
  26. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  27. Marazzi S (2005) Atlante orografico delle Alpi: SOIUSA: suddivisione orografica internazionale unificata del sistema alpino. Priuli & Verlucca, Pavone Canavese (Torino)Google Scholar
  28. Merxmüller H (1952) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Verein zum Schutze der Alpenpflanzen und -Tiere 17:96–133Google Scholar
  29. Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261CrossRefGoogle Scholar
  30. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  31. Ozenda P (2002) Perspectives pour une geobiologie des montagnes. Presse polytechniques et universitaires romandes, Lausanne, p. 196Google Scholar
  32. Parisod C (2008) Postglacial recolonisation of plants in the Western Alps of Switzerland. Bot Helv 118:1–12CrossRefGoogle Scholar
  33. Parisod C, Besnard G (2007) Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755–2767CrossRefPubMedGoogle Scholar
  34. Petit RJ, Csaikl UM, Bordács S et al (2002) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manag 156:5–26CrossRefGoogle Scholar
  35. Petit RJ, Aguinagalde I, de Beaulieu J-L et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefPubMedGoogle Scholar
  36. Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity: I. Haploid locus. Theor Appl Genet 90:462–470CrossRefPubMedGoogle Scholar
  37. Pons O, Petit RJ (1996) Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedPubMedCentralGoogle Scholar
  38. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  39. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45CrossRefPubMedGoogle Scholar
  40. Ronikier M, Schneeweiss GM, Schönswetter P (2012) The extreme disjunction between Beringia and Europe in Ranunculus glacialis sl (Ranunculaceae) does not coincide with the deepest genetic split—a story of the importance of temperate mountain ranges in arctic–alpine phylogeography. Mol Ecol 21:5561–5578CrossRefPubMedGoogle Scholar
  41. Sang T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120CrossRefPubMedGoogle Scholar
  42. Schönswetter P, Tribsch A, Barfuss M, Niklfeld H (2002) Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium Sternb. & Hoppe (Campanulaceae) in the European Alps. Mol Ecol 11:2637–2647CrossRefPubMedGoogle Scholar
  43. Schönswetter P, Paun O, Tribsch A, Niklfeld H (2003) Out of the Alps: colonization of northern Europe by East Alpine populations of the glacier buttercup Ranunculus glacialis L. (Ranunculaceae). Mol Ecol 12:3373–3381CrossRefPubMedGoogle Scholar
  44. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555CrossRefPubMedGoogle Scholar
  45. Smouse P (1998) To tree or not to tree. Mol Ecol 7:399–412CrossRefGoogle Scholar
  46. Stehlik I (2000) Nunataks and peripheral refugia for alpine plants during quaternary glaciation in the middle part of the Alps. Bot Helv 110:25–30Google Scholar
  47. Stehlik I (2002) Glacial history of the alpine herb Rumex nivalis (Polygonaceae): a comparison of common phylogeographic methods with nested clade analysis. Am J Bot 89:2007–2016CrossRefPubMedGoogle Scholar
  48. Stehlik I, Schneller JJ, Bachmann K (2001) Resistance or emigration: response of the high-alpine plant Eritrichium nanum (L.) Gaudin to the ice age within the Central Alps. Mol Ecol 10:357–370CrossRefPubMedGoogle Scholar
  49. Stensvold M (2008) A taxonomic and phylogeographic study of the Botrychium lunaria complex. Ph.D. Dissertation, Iowa State University, USAGoogle Scholar
  50. Stensvold MC, Farrar DR (2017) Genetic diversity in the worldwide Botrychium lunaria (Ophioglossaceae) complex, with new species and new combinations. Brittonia. doi: 10.1007/s12228-016-9455-z (Printed online 13 December 2016) Google Scholar
  51. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  52. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464CrossRefPubMedGoogle Scholar
  53. Taberlet P, Zimmermann NE, Englisch T et al (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol Lett 15:1439–1448CrossRefPubMedGoogle Scholar
  54. Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737Google Scholar
  55. The Pteridophyte Phylogeny Group. (PPG1) (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603CrossRefGoogle Scholar
  56. Thiel-Egenter C, Alvarez N, Holderegger R et al (2011) Break zones in the distributions of alleles and species in alpine plants. J Biogeogr 38:772–782CrossRefGoogle Scholar
  57. Trewick SA, Morgan-Richards M, Russell SJ et al (2002) Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Mol Ecol 11:2003–2012CrossRefPubMedGoogle Scholar
  58. Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52:477–497CrossRefGoogle Scholar
  59. Tribsch A, Schönswetter P, Stuessy TF (2002) Saponaria pumila (Caryophyllaceae) and the ice age in the European Alps. Am J Bot 89:2024–2033CrossRefPubMedGoogle Scholar
  60. Vogel JC, Rumsey FJ, Schneller JJ et al (1999) Where are the glacial refugia in Europe? Evidence from pteridophytes. Biol J Linn Soc 66:23–37CrossRefGoogle Scholar
  61. Williams EW, Waller DM (2012) Phylogenetic placement of species within the genus Botrychium ss (Ophioglossaceae) on the basis of plastid sequences, amplified fragment length polymorphisms, and flow cytometry. Int J Plant Sci 173:516–531CrossRefGoogle Scholar
  62. Winkler M, Tribsch A, Schneeweiss GM et al (2012) Tales of the unexpected: phylogeography of the arctic-alpine model plant Saxifraga oppositifolia (Saxifragaceae) revisited. Mol Ecol 21:4618–4630CrossRefPubMedGoogle Scholar
  63. Winther JL, Friedman WE (2007) Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae). Am J Bot 94:1248–1255CrossRefPubMedGoogle Scholar
  64. Wohlgemut T (2002) Alpine plant species richness in the Swiss Alps: diversity hot spots reconsidered. Mém. Soc. Bot. Genève 3:63–74Google Scholar

Copyright information

© Swiss Botanical Society 2017

Authors and Affiliations

  1. 1.Université de Neuchâtel, Institut de Biologie, Laboratoire de botanique évolutiveNeuchâtelSwitzerland
  2. 2.Departement Umweltwissenschaften, Forschungsgruppe PflanzenökologieUniversität BaselBaselSwitzerland

Personalised recommendations