Alpine Botany

, Volume 126, Issue 1, pp 59–71 | Cite as

Vicariance, dispersal, and hybridization in a naturally fragmented system: the afro-alpine endemics Carex monostachya and C. runssoroensis (Cyperaceae)

  • Abel Gizaw
  • Tigist Wondimu
  • Tusiime Felly Mugizi
  • Catherine Aloyce Masao
  • Ahmed Abdikadir Abdi
  • Magnus Popp
  • Dorothee Ehrich
  • Sileshi Nemomissa
  • Christian Brochmann
Original Article


The naturally fragmented habitat on the tallest African mountains provides a good model system to study vicariance, dispersal, and hybridization. Many mountains are separated by lowland that likely was unsuitable for high-alpine plants even during cold climatic periods. We explore the relative importance of these processes using two endemic sister species: the widespread Ethiopian/eastern East African Carex monostachya and the mainly western East African C. runssoroensis. These bog-forming sedges co-occur in some mountains and are hypothesized to hybridize. The two species were distinctly differentiated for genome-wide amplified fragment length polymorphisms (AFLPs), also in one mountain where they co-occur. However, the plants from another mountain showed strong signals of admixture. The results suggest initial divergence into one western and one northern/eastern lineage, followed by long-distance dispersal resulting in secondary contact zones. In addition within species genetic diversity was clearly structured with distinct genetic groups on some, but not all mountains. Differentiation levels varied considerably and did not always correspond to the extent of lowland habitat between mountains. The narrow Rift Valley in the otherwise nearly contiguous highlands in Ethiopia appears to present a much stronger barrier to dispersal than the extensive lowlands separating Ethiopia from East Africa. This may be a general pattern since it has been documented also for other afro-alpine species.


Afro-alpine Carex Hybridization Long-distance dispersal Vicariance 



This study was funded by The Norwegian Programme for Development, Research and Higher Education (NUFU) Project No 2007/1058 (AFROALP-II-Afroalpine ‘sky islands’: genetic versus taxonomic biodiversity, climate change, and conservation) to S. Nemomissa and C. Brochmann. We thank Kåre Lye for verifying the identifications of the herbarium material and Berit Gehrke for helpful comments and discussions. We are grateful to the other members of AFROALP-II team, in particular Geoffrey Mwachala (Kenya), Pantaleo Munishi (Tanzania), and Gerald Eilu (Uganda) for facilitating collection permits and for helping to organize the field work in their respective countries. We also thank two anonymous reviewers for helpful comments and corrections.


  1. Arctander P, Johansen C, Coutellec-Vreto MA (1999) Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol Biol Evol 16:1724–1739CrossRefPubMedGoogle Scholar
  2. Assefa A, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina. Heredity 99:133–142CrossRefPubMedGoogle Scholar
  3. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273CrossRefPubMedGoogle Scholar
  4. Bonnefille R, Roeland JC, Guiot J (1990) Temperature and rainfall estimates of the past 40000 years in equatorial Africa. Nature 346:347–349CrossRefGoogle Scholar
  5. Brühl C (1997) Flightless insects: a test case for historical relationships of African mountains. J Biogeogr 24:233–250CrossRefGoogle Scholar
  6. Bryant D, Moulton V (2004) NeighborNet: an agglomerative algorithm for the construction of phylogenetic networks. Mol Biol Evol 21:255–265CrossRefPubMedGoogle Scholar
  7. Choler P, Erschbamer B, Tribsch A, Gielly L, Taberlet P (2003) Genetic introgression as a potential to widen a species’ niche: insights from the alpine Carex curvula. Proc Natl Acad Sci USA 101:171–176CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chorowicz J (2005) The East African rift system. J Afr Earth Sci 43:379–410CrossRefGoogle Scholar
  9. Coetzee JA (1964) Evidence for a considerable depression of the vegetation belts during the upper Pleistocene on the East African mountains. Nature 204:564–566CrossRefGoogle Scholar
  10. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604CrossRefGoogle Scholar
  11. Ehrich D (2007) Structure-sum v. 2007: a series of R functions for summarizing the outputs of the program structure ver. 2.2. (Unpublished, available from the author upon request)Google Scholar
  12. Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16:2542–2559CrossRefPubMedGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  14. Excoffier LLG, Schneider S (2005) ARLEQUIN version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedCentralGoogle Scholar
  15. Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null allele. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  16. Flenley JR (1979) The Equatorial rain forest: a geological history. Butterworths, LondonGoogle Scholar
  17. Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637CrossRefPubMedGoogle Scholar
  18. Gehrke B (2011) Synopsis of Carex (Cyperaceae) from sub-Saharan Africa and Madagascar. Bot J Linn Soc 166:51–59CrossRefGoogle Scholar
  19. Gehrke B, Linder HP (2009) The scramble for Africa: pan-temperate elements on the African high mountains. Proc R Soc Lond, Ser B: Biol Sci 276:2657–2665CrossRefGoogle Scholar
  20. Gehrke B, Linder HP (2014) Species richness, endemism and species composition in the tropical Afroalpine flora. Alp Bot 124:165–177CrossRefGoogle Scholar
  21. Gizaw A, Kebede M, Nemomissa S, Ehrich D, Bekele B, Mirré V, Popp M, Brochmann C (2013) Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine ‘sky islands’ inferred from AFLPs and plastid DNA sequences. Flora 208:453–463CrossRefGoogle Scholar
  22. Gottelli D, Marino J, Sillero-Zubiri C, Funk SM (2004) The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol Ecol 13:2275–2286CrossRefPubMedGoogle Scholar
  23. Haines RW, Lye KA (1983) The sedges and rushes of East Africa. East African Natural History Society, NairobiGoogle Scholar
  24. Hedberg O (1957) Afroalpine vascular plants. A taxonomic revision. Symb Bot Ups 15:1–411Google Scholar
  25. Hedberg O (1964) Features of Afroalpine plant ecology. Almqvist and Wiksells, UppsalaGoogle Scholar
  26. Hedberg O (1965) Afroalpine flora elements. Webbia 19:519–529Google Scholar
  27. Hedberg O (1969) Evolution and speciation in a tropical high mountain flora. Bot J Linn Soc 1:135–148CrossRefGoogle Scholar
  28. Hedberg O (1986) Origin of the afroalpine flora. In: Vuilleumier F, Monastero M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 443–468Google Scholar
  29. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  30. Jacob M, Annys S, Frankl A, De Ridder M, Beeckman H, Guyassa E, Nyssen J (2015) Tree line dynamics in the tropical African highlands—identifying drivers and dynamics. J Veg Sci 26:9–20CrossRefGoogle Scholar
  31. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  32. Jiménez-Mejías P, Luceño M, Lye KA, Brochmann C, Gussarova G (2012) Genetically diverse but with surprisingly little geographical structure: the complex history of the widespread herb Carex nigra (Cyperaceae). J Biogeogr 39:2279–2291CrossRefGoogle Scholar
  33. Kebede M, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol Ecol 16:1233–1243CrossRefPubMedGoogle Scholar
  34. Knox EB, Palmer JD (1995) Chloroplast DNA variation and the recent radiation of the giant senecios (Asteraceae) on the tall mountains of eastern Africa. Proc Natl Acad Sci USA 92:10349–10353CrossRefPubMedPubMedCentralGoogle Scholar
  35. Knox EB, Palmer JD (1998) Chloroplast DNA evidence on the origin and radiation of the giant Lobelias in Eastern Africa. Syst Bot 23:109–149CrossRefGoogle Scholar
  36. Koch MA, Kiefer C, Ehrich D, Vogel J, Brochmann C, Mummenhoff K (2006) Three times out of Asia Minor: the phylogeography of Arabis alpina L. (Brassicaceae). Mol Ecol 15:825–839CrossRefPubMedGoogle Scholar
  37. Korpelainen H, Virtanen V, H KK Väre (2010) Hybridization and introgression in Carex aquatilis and C. paleacea. Plant Syst Evol 287:141–151CrossRefGoogle Scholar
  38. Kosman E (2003) Nei’s gene diversity and the index of average differences are identical measures of diversity within populations. Plant Pathol 52:533–535CrossRefGoogle Scholar
  39. Kükenthal G (1909) Cyperaceae-Caricoideae. In: Engler A (ed) Das Pflanzenreich, vol. 4 (21). Wilhelm Engelmann, Leipzig, pp 1–824Google Scholar
  40. Linder HP (2014) The evolution of African plant diversity. Front Ecol Evol 2:1–14CrossRefGoogle Scholar
  41. Lye KA (1997) 212. Cyperaceae: 19. Carex. In: Edwards S, Demissew S, Hedberg I (eds) Flora of Ethiopia and Eritrea. Addis Ababa University, Addis Ababa, pp 391–511Google Scholar
  42. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  43. Masao CA, Gizaw A, Piñeiro R, Tusiime FM, Wondimu T, Abdi AA, Popp M, Gussarova G, Lye KA, Munishi P, Nemomissa S, Brochmann C (2013) Phylogeographic history and taxonomy of some afro-alpine grasses assessed based on AFLPs and morphometry: deschampsia cespitosa, D. angusta and Koeleria capensis. Alp Bot 123:107–122CrossRefGoogle Scholar
  44. Mohammed MU, Bonnefille R (1998) A late Holocene pollen record from a highland peak at Tamsaa, Bale Mountains, South Ethiopia. Glob Planet Chang 16–17:121–129CrossRefGoogle Scholar
  45. Moreau RE (1963) Vicissitides of the African biomes in the late Pleistocene. Proc Zool Soc Lond 141:395–421CrossRefGoogle Scholar
  46. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788CrossRefPubMedGoogle Scholar
  47. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3(7):e196CrossRefPubMedPubMedCentralGoogle Scholar
  48. Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029CrossRefGoogle Scholar
  49. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  50. Reznicek AA (1990) Evolution in sedges (Carex, Cyperaceae). Can J Bot 68:1409–1432CrossRefGoogle Scholar
  51. Rohlf F (2000) NTSYSpc: Numerical taxonomy and multivariate analysis system. Version 2.11a. Exeter Software, Setauket, New YorkGoogle Scholar
  52. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  53. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MV (2002) Genetic structure of human populations. Science 298:2381–2385CrossRefPubMedGoogle Scholar
  54. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  55. Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732CrossRefGoogle Scholar
  56. Starr JR, Ford BA (2009) Phylogeny and evolution in Cariceae (Cyperaceae): current knowledge and future directions. Bot Rev 75:110–137CrossRefGoogle Scholar
  57. Trauth MH, Maslin MA, Deino A, Strecker MR (2005) Late cenozoic moisture history of East Africa. Science 309:2051–2053CrossRefPubMedGoogle Scholar
  58. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  59. Van Zinderen Barker EM (1962) A late-glacial and post-glacial climatic correlation between East Africa and Europe. Nature 194:201–203CrossRefGoogle Scholar
  60. Verdcourt B (2010) Carex. In: Beentje HJ, Ghazanfar SA (eds) Flora of Tropical East Africa. Richmond Kew Publishing, KewGoogle Scholar
  61. Volkova PA, Shipunov AB, Elven R, Brochmann C (2008) The seashore sedges of the Russian Kola Peninsula: how many species? Flora 203:523–533CrossRefGoogle Scholar
  62. Wondimu T, Gizaw A, Tusiime FM, Masao CA, Abdi AA, Gussarova G, Popp M, Nemomissa S, Brochmann C (2014) Crossing barriers in an extremely fragmented system: two case studies in the afro-alpine sky island flora. Plant Syst Evol 300:415–430CrossRefGoogle Scholar
  63. Yalden DW (1983) The extent of high ground in Ethiopia compared to the rest of Africa. SINET 6:35–38Google Scholar

Copyright information

© Swiss Botanical Society 2016

Authors and Affiliations

  • Abel Gizaw
    • 1
    • 2
  • Tigist Wondimu
    • 1
    • 2
  • Tusiime Felly Mugizi
    • 1
    • 3
  • Catherine Aloyce Masao
    • 1
    • 4
  • Ahmed Abdikadir Abdi
    • 1
    • 5
  • Magnus Popp
    • 1
  • Dorothee Ehrich
    • 6
  • Sileshi Nemomissa
    • 2
  • Christian Brochmann
    • 1
  1. 1.Natural History MuseumUniversity of OsloOsloNorway
  2. 2.Department of Plant Biology and Biodiversity ManagementAddis Ababa UniversityAddis AbabaEthiopia
  3. 3.Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical SciencesMakerere UniversityKampalaUganda
  4. 4.Department of Forest BiologySokoine University of AgricultureMorogoroTanzania
  5. 5.Botany DepartmentNational Museums of KenyaNairobiKenya
  6. 6.Institute for Arctic and Marine BiologyUniversity of TromsøTromsøNorway

Personalised recommendations