Alpine Botany

, Volume 123, Issue 2, pp 107–122 | Cite as

Phylogeographic history and taxonomy of some afro-alpine grasses assessed based on AFLPs and morphometry: Deschampsia cespitosa,D. angusta and Koeleria capensis

  • Catherine A. Masao
  • Abel Gizaw
  • Rosalía Piñeiro
  • Felly M. Tusiime
  • Tigist Wondimu
  • Ahmed A. Abdi
  • Magnus Popp
  • Galina Gussarova
  • Kåre A. Lye
  • Pantaleo Munishi
  • Sileshi Nemomissa
  • Christian Brochmann
Original Paper

Abstract

Phylogeographic studies in the high mountains of Africa are hampered by the limited material available, resulting in insufficient knowledge of taxonomic variation within and among closely related species. Here, we address genetic and morphological variation in three grass species, of which one (Deschampsia angusta) has been reported as narrowly endemic and vulnerable whereas Deschampsia cespitosa and Koeleria capensis are widely distributed also outside the afro-alpine region. We used amplified fragment length polymorphisms (AFLPs) to assess genetic structuring and diversity in material collected during recent field expeditions and included additional herbarium material in morphometric analyses. The plants identified as the endemic D. angusta were genetically very similar to those identified as D. cespitosa from the same mountain (Mt Ruwenzori), forming a single coherent genetic group in STRUCTURE analysis. The plants identified as D. angusta seem to represent extremes of continuous gradients of morphological variation within a single, variable species, D. cespitosa. We found that the afro-alpine material of Deschampsia consists of three genetically very distinct groups corresponding to the three mountains investigated, suggesting persistence in isolated afro-alpine refugia during one or more glacial cycles. In contrast, we found no clear genetic structure in K. capensis. This species harbored very little genetic diversity in all six mountain areas examined, and little genetic rarity except in the Ethiopian Simen Mts. This pattern may be explained by recent colonization of the afro-alpine region from a single source population or possibly by extensive recent gene flow combined with bottlenecks. We found, however, some differentiation between different K. capensis populations from Mt Kilimanjaro, corresponding to two described varieties. This study demonstrates the need for further taxonomic exploration of the enigmatic flora of the isolated afro-alpine ‘sky islands’ and highlights that different species may have conspicuously different phylogeographic histories.

Keywords

AFLP Afro-alpine Deschampsia Koeleria Morphometry Phylogeography 

Supplementary material

35_2013_119_MOESM1_ESM.doc (147 kb)
Supplementary material 1 (DOC 147 KB)
35_2013_119_MOESM2_ESM.doc (81 kb)
Supplementary material 2 (DOC 81 KB)

References

  1. Assefa A, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina. Heredity 99:33–142CrossRefGoogle Scholar
  2. Ayele TB, Gailing O, Umer M, Finkeldey R (2009) Chloroplast DNA haplotype diversity and postglacial recolonization of Hagenia abyssinica (Bruce) J.F. Gmel. in Ethiopia. Plant Syst Evol 280:175–185CrossRefGoogle Scholar
  3. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  4. Bonnefille R (1995) A reassessment of the Plio-Pleistocene pollen record of East Africa. In: Vrba ES, Denton GH, Partridge TC, Burckle LH (eds) Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, pp 299–310Google Scholar
  5. Chiapella JO (2007) A molecular phylogenetic study of Deschampsia (Poaceae: Aveneae) inferred from nuclear ITS and plastid trnL sequence data: support for the recognition of Avenella and Vahlodea. Taxon 56:55–64Google Scholar
  6. Chiapella JO, DeBoer VL, Amico GC, Kuhl JC (2011) A morphological and molecular study in the Deschampsia cespitosa complex (Poaceae; Poeae; Airinae) in northern North America. Am J Bot 98:1366–1380PubMedCrossRefGoogle Scholar
  7. Clayton WD (1970) Gramineae I. In: Milne-Redhead E, Polhill RM (eds) Flora of tropical East Africa. Crown Agents, London, pp 1–176Google Scholar
  8. Clayton WD, Vorontsova MS, Harman KT, Williamson H (2006 onwards) GrassBase. The Online World Grass Flora. http://www.kew.org/data/grasses-db.html. Accessed 28 Nov 2012
  9. deMenocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59PubMedCrossRefGoogle Scholar
  10. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604CrossRefGoogle Scholar
  11. Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16:2542–2559PubMedCrossRefGoogle Scholar
  12. Elven R (2011) Annotated Checklist of the Panarctic Flora (PAF). Vascular plants. http://nhm2.uio.no/paf/. Accessed 5 Dec 2012
  13. Engler A (1892) Uber die Hochgebirgsflora des tropischen Afrika. Verlag der Konigl. Akademie der Wissenschaften, BerlinGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  15. Excoffier L, Lischer HEL (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  16. Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null allele. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  17. Flenley J (1979) The equatorial rain forest: a geological history. Butterworth, LondonGoogle Scholar
  18. Fries RE, Fries TCE (1922) Die Riesen-Lobelien Afrikas. Sven Bot Tidskr 16:383–416Google Scholar
  19. Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637PubMedCrossRefGoogle Scholar
  20. Geleta M, Bryngelsson T, Bekele E, Dagne K (2008) Assessment of genetic diversity of Guizotia abyssinica (L.f.) Cass. (Asteraceae) from Ethiopia using amplified fragment length polymormophism. Plant Genet Resour 6:41–51CrossRefGoogle Scholar
  21. Gizaw A, Kebede M, Nemomissa S, Ehrich D, Bekele B, Mirré V, Popp M, Brochmann C (2013) Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine ‘sky islands’ inferred from AFLPs and plastid DNA sequences. Flora 208:453–463CrossRefGoogle Scholar
  22. Gottelli D, Marino J, Sillero-Zubiri C, Funk SM (2004) The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol Ecol 13:2275–2286PubMedCrossRefGoogle Scholar
  23. Griffiths CJ (1993) The geological evolution of East Africa. In: Lovett JC, Wasser SK (eds) Biogeography and ecology of the rain forests of Eastern Africa. Cambridge University Press, Cambridge, pp 19–23Google Scholar
  24. Hedberg O (1951) Vegetation belts of the East African mountains. Sven Bot Tidskr 45:140–202Google Scholar
  25. Hedberg O (1957) Afroalpine vascular plants. A taxonomic revision. Symb Bot Ups 15:1–411Google Scholar
  26. Hedberg O (1969) Evolution and speciation in a tropical high mountain flora. Bot J Linn Soc 1:135–148CrossRefGoogle Scholar
  27. Hedberg O (1970) Evolution of the afroalpine flora. Biotropica 2:16–23CrossRefGoogle Scholar
  28. Hedberg O (1986) Origin of the afroalpine flora. In: Vuilleumier F, Monastero M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 443–468Google Scholar
  29. Hedberg I, Hedberg O (1977) Chromosome numbers of afroalpine and afromontane angiosperms. Bot Not 130:1–24Google Scholar
  30. Hedberg I, Hedberg O (1979) Tropical-alpine life-forms of vascular plants. Oikos 33:297–307CrossRefGoogle Scholar
  31. Kadu CA, Schueler S, Konrad H, Muluvi GM, Eyog-Matig O, Muchugi A, Williams VL, Ramamonjisoa L, Kapinga C, Foahom B, Katsvanga C, Hafashimana D, Obama C, Geburek T (2011) Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol Ecol 20:165–178PubMedCrossRefGoogle Scholar
  32. Kadu CA, Konrad H, Schueler S, Muluvi GM, Eyog-Matig O, Muchugi A, Williams VL, Ramamonjisoa L, Kapinga C, Foahom B, Katsvanga C, Hafashimana D, Obama C, Geburek T (2013) Divergent pattern of nuclear genetic diversity across the range of the Afromontane Prunus africana mirrors variable climate of African highlands. Ann Bot 111:47–60PubMedCrossRefGoogle Scholar
  33. Kebede M, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol Ecol 16:1233–1243PubMedCrossRefGoogle Scholar
  34. Koch MA, Kiefer C, Ehrich D, Vogel J, Brochmann C, Mummenhoff K (2006) Three times out of Asia Minor: the phylogeography of Arabis alpina L. (Brassicaceae). Mol Ecol 15:825–839PubMedCrossRefGoogle Scholar
  35. Kosman E (2003) Nei’s gene diversity and the index of average differences are identical measures of diversity within populations. Plant Pathol 52:533–535CrossRefGoogle Scholar
  36. Magombo ZLK, Mbeiza Mutekanga N, Ndiritu GG (2004) Freshwater Biodiversity Assessment workshop (Uganda. Dec’ 2003), Deschampsia angusta. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. http://www.iucnredlist.org Accessed 25 Nov 2012
  37. Mohammed MU, Bonnefille R (1998) A late Holocene pollen record from a highland peak at Tamsaa, Bale Mountains, South Ethiopia. Global Planet Change 16–17:121–129CrossRefGoogle Scholar
  38. Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  39. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  40. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155PubMedCrossRefGoogle Scholar
  41. Pecinka A, Suchankova P, Lysak MA, Travnicek B, Dolezel J (2006) Nuclear DNA content variation among Central European Koeleria taxa. Ann Bot 98:117–122PubMedCrossRefGoogle Scholar
  42. Phillips S (1995) Poaceae (Gramineae). In: Hedberg I, Edwards S (eds) Flora of Ethiopia and Eritrea, vol. 7. Addis Ababa: The National Herbarium, Addis Ababa University and Department of Systematic Botany, Uppsala University, Addis Abab and Uppsala, pp 33–38Google Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  44. Richard A (1847–1851) Tentamen Florae Abyssinicae. Arthus Bertrand, Paris Reprinted by Uppsala University, 1982Google Scholar
  45. Rohlf F (2000) NTSYS-PC. Numerical Taxonomy and Multivariate Analysis System. Version 2. 11a. Exeter Software, Setauket (NY)Google Scholar
  46. Ryner MA, Bonnefille R, Holmgren K, Muzuka A (2006) Vegetation changes in Empakaai Crater, northern Tanzania, at 14 000–9 300 cal yr BP. Rev Palaeobot Palynol 140:163–174CrossRefGoogle Scholar
  47. Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732CrossRefGoogle Scholar
  48. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  49. Voje KL, Hemp C, Flagstad O, Saetre GP, Stenseth NC (2009) Climatic change as an engine for speciation in flightless Orthoptera species inhabiting African mountains. Mol Ecol 18:93–108PubMedGoogle Scholar

Copyright information

© Swiss Botanical Society 2013

Authors and Affiliations

  • Catherine A. Masao
    • 1
    • 2
    • 8
  • Abel Gizaw
    • 2
    • 3
  • Rosalía Piñeiro
    • 2
  • Felly M. Tusiime
    • 2
    • 4
  • Tigist Wondimu
    • 2
    • 3
  • Ahmed A. Abdi
    • 2
    • 5
  • Magnus Popp
    • 2
  • Galina Gussarova
    • 2
    • 7
  • Kåre A. Lye
    • 6
  • Pantaleo Munishi
    • 1
  • Sileshi Nemomissa
    • 3
  • Christian Brochmann
    • 2
  1. 1.Department of Forest BiologySokoine University of AgricultureMorogoroTanzania
  2. 2.National Centre for Biosystematics, Natural History MuseumUniversity of OsloOsloNorway
  3. 3.Department of Plant Biology and Biodiversity ManagementAddis Ababa UniversityAddis AbabaEthiopia
  4. 4.College of Agriculture and Environmental SciencesMakerere UniversityKampalaUganda
  5. 5.East African HerbariumNational Museum of KenyaNairobiKenya
  6. 6.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
  7. 7.Department of Botany, Faculty of Biology and Soil SciencesSt Petersburg State UniversitySt PetersburgRussia
  8. 8.Institute of Resource AssessmentUniversity of Dar es SalaamDar es SalaamTanzania

Personalised recommendations