Advertisement

Alpine Botany

, Volume 123, Issue 2, pp 41–53 | Cite as

Working toward integrated models of alpine plant distribution

  • Bradley Z. Carlson
  • Christophe F. Randin
  • Isabelle Boulangeat
  • Sébastien Lavergne
  • Wilfried Thuiller
  • Philippe Choler
Review

Abstract

Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial–temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

Keywords

Alpine plants Alpine-specific drivers Integrated approach Species distribution modelling 

Notes

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Community’s Seven Framework Programme FP7/2007-2013 Grant Agreement No. 281422 (TEEMBIO) and from the ERA-NET CIRCLE (Mountain Group) (CAMELEON).

References

  1. Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata) expansion in the Pyrenees. Glob Ecol Biogeogr 19:632–641Google Scholar
  2. Austin MP, Smith TM (1989) A new model of continuum concept. Vegetation 83:35–47CrossRefGoogle Scholar
  3. Baptist F, Choler P (2008) A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann Bot 101:549–559PubMedCrossRefGoogle Scholar
  4. Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to global warming. Glob Ecol Biogeogr 18:460–472CrossRefGoogle Scholar
  5. Bebi P, Kulakowski D, Rixen C (2009) Snow avalanche disturbances in forest ecosystems: state of research and implications for management. For Ecol Manage 257:1883–1892CrossRefGoogle Scholar
  6. Billings WD (1973) Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. Bioscience 23:697–704CrossRefGoogle Scholar
  7. Billings WD, Bliss LC (1959) An alpine snowbank environment and its effects on vegetation, plant development and productivity. Ecology 40:388–397CrossRefGoogle Scholar
  8. Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438CrossRefGoogle Scholar
  9. Boggs K, Klein SC, Grunblatt J, Boucher T, Koltun B, Sturdy M, Streveler GP (2010) Alpine and sub-alpine vegetation chronosequences following deglaciation in coastal Alaska. Arct Antarct Alp Res 42:385–395CrossRefGoogle Scholar
  10. Boulangeat I, Gravel D, Thuiller W (2012a) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol Lett 15:584–593PubMedCrossRefGoogle Scholar
  11. Boulangeat I, Philippe P, Abdulhak S, Douzet R, Garraud L, Lavergne S, Lavorel S, Van Es J, Vittoz P, Thuiller W (2012b) Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology. Glob Change Biol 18:3464–3475CrossRefGoogle Scholar
  12. Bowman W, Theodose T, Schardt J, Conant R (1993) Constraints of nutrient availability on primary production in two alpine Tundra communities. Ecology 74:2085–2097CrossRefGoogle Scholar
  13. Brown DG (1994) Predicting vegetation types at treeline using topography and biophysical disturbance variables. J Veg Sci 5:641–656CrossRefGoogle Scholar
  14. Butler DR, Malanson GP, Walsh SJ, Fagre D (2007) Influences of geomorphology and geology on alpine treeline in the American West—More important than climatic influences? Phys Geogr 28:434–450CrossRefGoogle Scholar
  15. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848PubMedCrossRefGoogle Scholar
  16. Chapin SF, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175CrossRefGoogle Scholar
  17. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366CrossRefGoogle Scholar
  18. Choler P (2005) Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct Antarct Alp Res 37:444–453CrossRefGoogle Scholar
  19. Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308CrossRefGoogle Scholar
  20. Coops NC, Morsdorf F, Schaepman ME, Zimmermann NE (2013) Characterisation on an alpine treeline using airborne LIDAR data and physiological modeling. Glob Change Biol. doi: 10.1111/gcb.12319 Google Scholar
  21. De Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stöcklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key Arctic-alpine species. Mol Ecol 21:1081–1097PubMedCrossRefGoogle Scholar
  22. Dedieu JP, Randin CF and Zappa M (2012) Validation par télédétection spatiale de l’enneigement dans les Alpes autrichiennes pour l’approvisionnement en eau de la ville de Vienne. 25ème Colloque de l’Association Internationale de Climatologie, Grenoble, FranceGoogle Scholar
  23. Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:1–17CrossRefGoogle Scholar
  24. Dobrowski S (2010) A climatic basis for micro-refugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035CrossRefGoogle Scholar
  25. Dormann CF (2007) Promising the future? Global change projections of species distributions. Basic Appl Ecol 8:387–397CrossRefGoogle Scholar
  26. Dormann CF, Stanislaus J, Cabral J, Chuinne I, Graham C, Hartig F, Kearney M, Morin X, Römermann C, Schröder B, Singer A (2011) Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr 39:2119–2131Google Scholar
  27. Dullinger S, Hülber K (2011) Experimental evaluation of seed limitation in alpine snow bed plants. PloS ONE 6(6):e21537PubMedCrossRefGoogle Scholar
  28. Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria. Arct Antarct Alp Res 35:434–441CrossRefGoogle Scholar
  29. Dullinger S, Mang T, Dirnböck T, Ertle S, Gattringer A, Grabherr G, Leitner M, Hülber K (2011) Patch configuration affects alpine plant distribution. Ecography 34:576–587CrossRefGoogle Scholar
  30. Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Ertl S, Fischer A, Lenoir J, Svenning JC, Psomas A, Schmatz DR, Silc U, Vittoz P, Hülber K (2012) Extinction debt of high-mountain plants under 21st century climate change. Nat Climate Change 2:619–622CrossRefGoogle Scholar
  31. Dumont M, Gardelle J, Sirguey P, Guillot A, Six D, Rabatel A, Arnaud Y (2012) Linking annual glacier mass balance and glacier albedo retrieved from MODIS data. Cryosphere 6:1527–1539CrossRefGoogle Scholar
  32. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  33. Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A (2009) Predicting future distributions of mountain plants under climate change: does dispersal matter? Ecography 32:34–35CrossRefGoogle Scholar
  34. Engler R, Thuiller W, Dullinger S, Zimmermann N, Araújo M, Pearman P, Le Lay G, Piedallu C, Albert C, Choler P, Coldea G, de Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, Puşcaş M, Sebastian MT, Stanisci A, Theurillat JP, Trivedi M, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341CrossRefGoogle Scholar
  35. Frei E, Bodin J, Walther GR (2010) Plant species’ range shifts in mountainous areas: all uphill from here? Bot Helv 120:117–128CrossRefGoogle Scholar
  36. Fridley JD (2009) Downscaling climate over complex terrain: high fine scale (<1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains)*. J Appl Meteorol Climatol 48:1033–1049CrossRefGoogle Scholar
  37. Gardent M, Rabatel A, Dedieu JP, Deline P, Schoeneich P (2012) Analysis of the glacier retreat in the French Alps since the 1960s based on the new glacier inventory. Geophys Res Abstr, 14, EGU2012-8984-1, 9th EGU General Assembly, WienGoogle Scholar
  38. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582CrossRefGoogle Scholar
  39. Gellrich M, Zimmermann N (2006) Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landsc Urb Plan, (LAND-1362), 12 ppGoogle Scholar
  40. Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of alpine-Nival ecotone. Antar Arct Alp Res 30:207–231CrossRefGoogle Scholar
  41. Gottfried M, Pauli H, Reiter K, Grabherr G (1999) A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Divers Distrib 5:241–251CrossRefGoogle Scholar
  42. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat JP, Thomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Climate Change 2:111–115CrossRefGoogle Scholar
  43. Guisan A, Theurillat JP (2000) Assessing alpine plant vulnerability to climate change: a modelling perspective. Integr Assess 1:307–320CrossRefGoogle Scholar
  44. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  45. Guisan A, Zimmermann N (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  46. Guisan A, Theurillat JP, Klenast F (2009) Predicting the potential distribution of plant species in an alpine environment. J Veg Sci 9:65–74CrossRefGoogle Scholar
  47. Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the alps. AMBIO 27:258–265Google Scholar
  48. Hanski I (1999) Metapopulation ecology. Oxford University Press, USAGoogle Scholar
  49. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to global warming. Ecol Lett 12:1040–1049PubMedCrossRefGoogle Scholar
  50. Hejcman M, Dvorak IJ, Kocianova M, Pavlu V, Nezerkova M, Pavlu V, Nezerkova P, Vitek O, Rauch O, Jenik J (2006) Snow depth and vegetation pattern in a late-melting snowbed analyzed by GPS and GIS in the Giant Mountains, Czech Republic. Arct Antarct Alp Res 38:90–98CrossRefGoogle Scholar
  51. Hirzel A, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presence. Ecol Model 199:142–152CrossRefGoogle Scholar
  52. Johnson PL, Billings WD (1962) Alpine vegetation of the Beartooth Plateau in relation to cryopedogenic processes and patterns. Ecol Monogr 32:105–135CrossRefGoogle Scholar
  53. Jouvet J, Picasso M, Rappaz J, Blatter H, Huss M, Funk M (2008) Numerical simulation of Rhone’s glacier from 1874 to 2100. In: JST Presto Symposium on Mathematical Sciences towards Environmental Problems (Hokkaido University technical report series in mathematics) 136: 1–9Google Scholar
  54. Kääb A, Paul F, Maisch M, Hoelzle M, Haeberli W (2002) The new remote sensing derived Swiss glacier inventory: II. First results. Ann Glaciol 34:363–366CrossRefGoogle Scholar
  55. Kammer PM, Schöb C, Choler P (2007) Increasing species richness on mountain summits: upward migration due anthropogenic climate change or re-colonization. J Veg Sci 18:301–306CrossRefGoogle Scholar
  56. Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034Google Scholar
  57. Kasai M, Ikeda M, Asahina T, Fujisawa K (2009) LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113:57–69CrossRefGoogle Scholar
  58. Keller F, Goyette S, Beniston M (2005) Sensitivity analysis of snow cover to climate change scenarios and their impact on plant habitats in alpine terrain. Clim Change 72:299–319CrossRefGoogle Scholar
  59. Kikvidze Z, Michalet R, Brooker RW, Lohengrin AC, Lortie CJ, Pugnaire FL, Callaway RM (2011) Climate drivers of plant–plant interactions and diversity in alpine communities. Alp Bot 121:63–70CrossRefGoogle Scholar
  60. Kissling WD, Dormann CF, Groeneveld J, Hickler T, Kühn I, McInerny GJ, Montoya JM, Römermann C, Schiffers K, Schurr FM, Singer A, Svenning JC, Zimmermann NE, O’Hara RB (2011) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J Biogeogr 39:2163–2178CrossRefGoogle Scholar
  61. Körner C (2003) Alpine plant life, 2nd edn. Springer, HeidelbergCrossRefGoogle Scholar
  62. Körner C (2007) Climate treelines: conventions, global patterns, causes. Erdkunde 61:316–324CrossRefGoogle Scholar
  63. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732CrossRefGoogle Scholar
  64. Körner C, Paulsen J, Spehn EM (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp Bot 121:73–78CrossRefGoogle Scholar
  65. Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–76CrossRefGoogle Scholar
  66. Lassueur T, Joost S, Randin C (2006) Very high resolution digital elevation models: do they improve models of plant species distribution? Ecol Model 198:139–153CrossRefGoogle Scholar
  67. Le Roux PC, Luoto M (2013) Earth surface processes drive the richness, composition and occurrence of plant species in an arctic-alpine environment. J Veg Sci. doi: 10.1111/jvs.12059 Google Scholar
  68. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771PubMedCrossRefGoogle Scholar
  69. Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatial and temporal patterns from stand to landscape scale. Ecol Model 199:409–420CrossRefGoogle Scholar
  70. Marcias-Fauria M, Johnson EA (2013) Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc Nat Acad Sci USA. doi: 10.1073/pnas.1221278110 Google Scholar
  71. Marmion M, Hjort J, Thuiller W, Luoto M (2008) A comparison of predictive models in modelling the distribution of periglacial landforms in Finnish Lapland. Earth Surf Proc Land 33:2241–2254CrossRefGoogle Scholar
  72. May F, Giladi I, Ristow M, Ziv Y, Jeltsch F (2013) Metacommunity, mainland-island system or island communities? Assessing the regional dynamics of plant communities in a fragmented landscape. Ecography 36:842–853CrossRefGoogle Scholar
  73. Meier ES, Kienast F, Pearman PB, Svenning JC, Thuiller W, Araújo MB, Guisan A, Zimmermann NE (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048CrossRefGoogle Scholar
  74. Michalet R, Brooker RW, Cavieres LA, Lortie CJ, Pugnaire FI, Valiente-Banuet A, Callaway RM (2006) Do biotic interactions shape both sides of the hump-backed model of species richness in plant communities? Ecology 82:3295–3308Google Scholar
  75. Midgley GF, Davies ID, Albert CH, Altwegg R, Hannah L, Hughes GO, O’Halloran LR, Seo C, Thorne JH, Thuiller W (2010) BioMove: an integrated platform simulating the dynamic response of species to environmental change. Ecography 33:612–616Google Scholar
  76. Nichols WF, Killingbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity: a landscape perspective. Conserv Biol 12:371–379CrossRefGoogle Scholar
  77. Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning J-C (2009) Importance of abiotic stress as a range determinant for European plants: insight from species’ responses to climatic gradients. Glob Ecol Biogeogr 18:437–449CrossRefGoogle Scholar
  78. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen (2009) Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Change Biol 15:2681–2693Google Scholar
  79. Pagel J, Schurr FM (2012) Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Glob Ecol Biogeogr 21:293–304CrossRefGoogle Scholar
  80. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486CrossRefGoogle Scholar
  81. Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: consequences for future monitoring strategies. Glob Planet Change 31:111–122CrossRefGoogle Scholar
  82. Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and Nival vegetation of the alps. J Mt Ecol 7:3–12Google Scholar
  83. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Loiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar P, Grabherr G (2012) Recent plant diversity changes on Europe's mountain summits. Science 336:353–355Google Scholar
  84. Pellissier L, Bråthen KA, Pottier J, Randin C, Vittoz P, Dubuis A, Yoccoz NG, Torbjørn A, Zimmermann NE, Guisan A (2010) Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of Tundra plants. Ecography 33:1004–1014CrossRefGoogle Scholar
  85. Puscas M, Taberlet P, Choler P (2008) Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol Ecol 17:2417–2429PubMedCrossRefGoogle Scholar
  86. Randin C, Liston G, Vittoz P, Guisan A (2009a) Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the Western Swiss Alps. Arct Antarct Alp Res 41:347–361CrossRefGoogle Scholar
  87. Randin C, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009b) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15:1557–1569CrossRefGoogle Scholar
  88. Rickebusch S, Lischke H, Bugmann H, Guisan A, Zimmermann NE (2007) Understanding the low-temperature limitations to forest growth through calibration of a forest dynamics model with tree-ring data. Forest Ecol Manag 246:251–263Google Scholar
  89. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416CrossRefGoogle Scholar
  90. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555PubMedCrossRefGoogle Scholar
  91. Tappeiner U, Tappeiner G, Aschenwald J, Tasser E, Ostendorf B (2001) GIS-based modelling of spatial pattern of snow cover duration in an alpine area. Ecol Model 138:265–275CrossRefGoogle Scholar
  92. Tappeiner U, Borsdorf A, Tasser E (2008) Mapping the Alps: Society–Economy–Environment. Spektrum Akademischer, HeidelbergGoogle Scholar
  93. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152CrossRefGoogle Scholar
  94. Thuiller W, Münkemüller T, Lavergne S, Mouillot D, Mouquet N, Schiffers K, Gravel D (2013) A road map for integrating eco-evolutionary processes into biodiversity models. Ecol Lett. doi: 10.1111/ele.12104 PubMedGoogle Scholar
  95. Vittoz P, Randin C, Dutoit A, Bonnet F, Hegg O (2008) Low impact of climate change on sub-alpine grasslands in the Swiss Northern Alps. Glob Change Biol 15:209–220CrossRefGoogle Scholar
  96. Walsh SJ, Butler DR, Allen TR, Malanson GP (1994) Influence of snow patterns and snow avalanches on the alpine treeline ecotone. J Veg Sci 5:657–672CrossRefGoogle Scholar
  97. Walsh SJ, Butler DR, Malanson GP (1998) An overview of scale, pattern, and process relationships in geomorphology: a remote sensing and GIS perspective. Geomorphology 21:183–205CrossRefGoogle Scholar
  98. Winkworth R, Wagstaff S, Glenny D, Lockhart P (2005) Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Org Divers Evol 5:237–247CrossRefGoogle Scholar
  99. Wipf S, Rixen C, Mulder CPH (2006) Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob Change Biol 12:1496–1506CrossRefGoogle Scholar
  100. Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Change 94:105–121CrossRefGoogle Scholar
  101. Zappa M (2008) Objective quantitative spatial verification of distributed snow cover simulations: an experiment for entire Switzerland. Hydrol Sci J 53:179–191CrossRefGoogle Scholar

Copyright information

© Swiss Botanical Society 2013

Authors and Affiliations

  • Bradley Z. Carlson
    • 1
  • Christophe F. Randin
    • 2
  • Isabelle Boulangeat
    • 1
  • Sébastien Lavergne
    • 1
  • Wilfried Thuiller
    • 1
  • Philippe Choler
    • 1
    • 3
  1. 1.Laboratoire d’Ecologie AlpineUMR CNRS-UJF 5553, Univ. Grenoble AlpesGrenobleFrance
  2. 2.Botanisches Institut der Universität BaselBaselSwitzerland
  3. 3.Station Alpine J. Fourier, UMS CNRS-UJF 3370, Univ. Grenoble AlpesGrenobleFrance

Personalised recommendations