Alpine Botany

, Volume 121, Issue 1, pp 11–22 | Cite as

Coldest places on earth with angiosperm plant life

  • Christian KörnerEmail author
Original Paper


The highest elevation flowering plant ever recorded in Europe, a lush moss flora, one of the coldest places of permanent animal life (collembola, mites) and indications of mycorrhizal fungi were evidenced for the Dom summit (4,545 m, central Swiss Alps) between solid siliceous rock at 4,505–4,543 m, 46° N. Cushions of Saxifraga oppositifolia were found at 4,505 to 4,507 m a.s.l. A large individual (possibly >30 years old) was in full bloom on 12 August 2009. The 14C-dated oldest debris of the biggest moss, Tortula ruralis, suggests a 13 year litter turnover. The thermal conditions at this outpost of plant life were assessed with a miniature data logger. The 2008/09 growing season had 66 days with a daily mean rooting zone temperature >0 °C in this high elevation micro-habitat (2–3 cm below ground). The degree hours >0 °C during this period summed up to 4,277 °h corresponding to 178 °d (degree days), the absolute winter minimum was −20.9 °C and the absolute summer maximum 18.1 °C. The mean temperature for the growing period was +2.6 °C. All plant parts, including roots, experience temperatures below 0 °C every night, even during the warmest part of the year. On clear summer days, plants may be physiologically active for several hours, and minimum night temperatures are clearly above the freezing tolerance of Saxifraga oppositifolia in the active state. In comparison with climate data for other extreme plant habitats in the Alps, Himalayas, in the Arctic and Antarctic, these data illustrate the life conditions at what is possibly the coldest place for angiosperm plant life on earth.


Mountain climatology Saxifraga Bryophytes Mites Collembola Fungi Isotopes 



I thank Jürg Anderegg for guiding me to the Dom summit in 2008 and collecting the logger and samples in 2009, Ulrike and Roman Hörler for teaming up during the 2008 climb, David Preiswerk for searching for the second summit logger in 2010 and recovering the loggers from 3,060 m elevation, and Inger Alsos for recovering the Svalbard logger. I thank the Jungfraujoch High Altitude Research Station for permission and assistance during the 2010 logging campaign. The taxonomic expertise by Erwin Urmi (University of Zürich; mosses), by Hans-Jürgen Schulz (collembola) and Axel Christian (mite; both Senckenberg Museum, Görlitz, Germany) and Fritz Oehl (Agroscope Reckenholz-Tänikon Research Station, Zürich; soil fungi) is gratefully acknowledged. Scanning electron micrographs have kindly been provided by the Center for Electron Microscopy of the University of Basel (Daniel Mathys), light microscope images were provided by Fritz Oehl (fungi, seeds) and Ulrich Burckhardt (collembola). Thanks to the isotope lab (Rolf Siegwolf) at the Paul Scherrer Institute, Villigen, Switzerland, for 13C measurements, and the Laboratory for Ion Beam Physics (Irka Hajdas and Lukas Wacker), Swiss Federal Institute of Technology, Zürich for 14C dating of moss debris, to Susanna Riedl for helping with sample handling, diagrams and literature, Urs Weber for taking the Saxifraga macro-photographs of fresh samples and work on the manuscript, Maria Brassel for providing photographs 2a, b, Jens Paulsen for processing the climate data. Thanks also to Inger Alsos, Georg Armbruster, Burkhard Büdel, Allan Green, Otto Hegg, Heiner Lenzin, Bruno Messerli, Volker Storch and Johanna Wagner for advice during preparation of the manuscript. Jiří Doležal provided the original climate data from the Himalaya survey (for additional analysis) that he published with the late Leoš Klimeš. Erika Hiltbrunner, Jürg Stöcklin and two anonymous referees helped improving the manuscript. Thanks to all.


  1. Alvarez-Uria P, Körner Ch (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–218CrossRefGoogle Scholar
  2. Anchisi E (1985) Quatrieme contribution a l’etude de la flore valaisanne. Bull Murithienne 102:115–126Google Scholar
  3. Bay C (1992) A phytogeographical study of the vascular plants of Northern Greenland–north of 74° north. Meddelelser Grönland Biosci 35:102Google Scholar
  4. Beniston M (2004) Climatic change and its impacts: an overview focusing on Switzerland. Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. Eisenbeis G, Meyer E (1999) Ecophysiological and morphological features of glacier-dwelling collembola. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Springer, Berlin, pp 197–218Google Scholar
  6. Gornall JL, Jónsdóttir IS, Woodin SJ, Van der Wal R (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–941PubMedCrossRefGoogle Scholar
  7. Gugerli F (1998) Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114:60–66CrossRefGoogle Scholar
  8. Hoch G, Körner Ch (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951CrossRefGoogle Scholar
  9. Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  10. Klimeš L, Doležal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography. doi: 10.1111/j.1600-0587.2009.05967.x
  11. Kol E (1935) Kryobiologische Studien am Jungfraujoch (3470 m) und in dessen Umgebung. Beih Bot Centralbl (Dresden) 53(Abt A):34–49Google Scholar
  12. Kopeszki H (2000) Auf der Suche nach roten Gletscherflöhen–Funde hochalpiner Springschwänze (Collembola). Vorarlberger Naturschau 8:133–144Google Scholar
  13. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  14. Körner C (2008) Winter crop growth at low temperature may hold the answer for alpine treeline formation. Plant Ecol Divers 1:3–11CrossRefGoogle Scholar
  15. Körner C, De Moraes JAPV (1979) Water potential and diffusion resistance in alpine cushion plants on clear summerdays. Oecol Plant 14:109–120Google Scholar
  16. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732CrossRefGoogle Scholar
  17. Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40CrossRefGoogle Scholar
  18. Körner C, Paulsen J, Pelaez-Riedl S (2003) A bioclimatic characterisation of Europe’s alpine areas. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe. Ecol studies, vol 167. Springer, Berlin, pp 13–28Google Scholar
  19. Ladinig U, Wagner J (2005) Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora 200:502–515Google Scholar
  20. Larcher W (1985) Frostresistenz. In: Sorauer P (founded) Handbuch der Pflanzenkrankheiten (Parey, Berlin), vol 1 part 5, 7edn. Parey, Berlin, pp 177–259Google Scholar
  21. Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374Google Scholar
  22. Larcher W, Wagner J (2009) High mountain bioclimate: temperatures near the ground recorded from timberline to the nival zone in the Central Alps. Contr Nat Hist (Bern) 12:857–874Google Scholar
  23. Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18Google Scholar
  24. Leya T (2004) Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. Shaker, AchenGoogle Scholar
  25. Mahringer W (1964) Untersuchungen von Boden- und Felstemperaturen auf dem Hohen Sonnblick (3100 m). Jahresber Sonnblick-Verein 60–62:17–31Google Scholar
  26. Maier E, Geissler P (1997) Moose der nivalen Stufe - oder von Höhenrekorden bei Moosen. Meylania 13:14–16Google Scholar
  27. Mathys H (1974) Klimatische Aspekte zur Frostverwitterung in der Hochgebirgsregion. Mitt Naturf Ges Bern Neue Folge 31:49–62Google Scholar
  28. Miehe G, Miehe S, Vogel J, Co S, Duo L (2007) Highest treeline in the northern hemisphere found in southern Tibet. Mt Res Dev 27:169–173CrossRefGoogle Scholar
  29. Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arctic Alp Res 25:391–402CrossRefGoogle Scholar
  30. Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794CrossRefGoogle Scholar
  31. Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135:30–38PubMedGoogle Scholar
  32. Pitschmann H, Reisigl H (1954) Zur nivalen Moosflora der Ötztaler Alpen (Tirol). Rev Bryol Lichénol 23:123–131Google Scholar
  33. Scherrer D, Körner C (2010a) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biol. doi:  10.1111/j.1365-2486.2009.02122.x
  34. Scherrer D, Körner C (2010b) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. doi: 10.1111/j.1365-2699.2010.02407.x
  35. Schinner F (1982) Freisetzung, Enzymaktivität und Bakteriengehalt von Boden unter Spaliersträuchern und Polsterpflanzen in der alpinen Stufe. Acta Oecol Oecol Plantarum 3:49–58Google Scholar
  36. Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2010) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77° S latitude, continental Antarctica. Polar Biol. doi: 10.1007/s00300-010-0851-7
  37. Smith RIL (1987) Deschampsia antarctica and Colobathus quitensis in the Terra Firma Islands. British Antarct Surv Bull 74:31–35Google Scholar
  38. Smith RIL (1994) Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–328CrossRefGoogle Scholar
  39. Sunding P (1962) Høydegrenser for høyere planter på Svalbard (Height limits for vascular plants in Svalbard). In: Årbok of the Norsk Polarinstitutt 1960, OsloGoogle Scholar
  40. Vaccari L (1914) La sopraelevanzione dei limiti superiori dei muschi in valle d’aosta. Société de la Flore Valdotaine 9:62–84Google Scholar
  41. Wagner J, Tengg G (1993) Phaenoembryologie der Hochgebirgspflanzen Saxifraga oppositifolia und Cerastium uniflorum. Flora 188:203–212Google Scholar
  42. Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma 243:117–128PubMedCrossRefGoogle Scholar
  43. Wagner J, Ladinig U, Steinacher G, Larl I (in press) From the flower bud to the mature seed: timing and dynamics of flower and seed development in high-mountain plants. In: Lütz C (ed) Plants in alpine regions: cell physiology of adaption and survival strategies. Springer, ViennaGoogle Scholar
  44. Wegmann M (1998) Frostdynamik in hochalpinen Felswänden am Beispiel der Region Jungfraujoch – Aletsch. Mitt Versuchsanst Wasserbau, Hydrologie und Glaziologie (VAW) ETH Zürich 161Google Scholar
  45. Werner P (1988) La Flore. Editions Pillet, MartignyGoogle Scholar
  46. Winkler E (1953) Beiträge zur Klimatologie hochalpiner Lagen der Zentralalpen. Ber Naturw Med Verein Innsbruck 53:209–223Google Scholar
  47. Wise KAJ, Gressitt JL (1965) Far southern animals and plants. Nature 4992:101–102CrossRefGoogle Scholar
  48. Zhu Y, Siegwolf R, Durka W, Körner C (2009) Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162:853–863PubMedCrossRefGoogle Scholar

Copyright information

© Swiss Botanical Society 2011

Authors and Affiliations

  1. 1.Institute of BotanyUniversity of BaselBaselSwitzerland

Personalised recommendations