Botanica Helvetica

, Volume 120, Issue 2, pp 139–149 | Cite as

Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps

  • Pascal Vittoz
  • Martin Camenisch
  • Romain Mayor
  • Luca Miserere
  • Mathias Vust
  • Jean-Paul Theurillat
Article

Abstract

In the European GLORIA project, 12 summits (treeline to nival belt) were inventoried in three regions of Switzerland: two in the Swiss National Park Graubünden and one in Valais. Vascular plants were recorded in all three regions and bryophytes and lichens were recorded only in Valais. On each summit, vegetation and temperature data were sampled using sampling protocols for the GLORIA project (Global Observation Research Initiative in Alpine environment) on large summit sections and in clusters of four 1 × 1-m quadrats. We observed a general decrease of species richness for all three systematic groups with increasing elevation in the summit sections, but only for vascular plants in the quadrats. In Valais, there was higher species richness for vascular plants than for bryophytes and lichens on the lower summits, but as the decrease in species richness was less pronounced for cryptogams, the latter were more numerous than vascular plants on the highest summit. Vascular species showed a clear shift of the dominant life form with elevation, with chamaephytes replacing hemicryptophytes. Bryophytes and lichens showed a weak trend among the life forms at the summit section scale, but a stronger shift of the dominant forms was seen in the quadrats, with cushion replacing turf bryophytes and crustaceous replacing fruticose lichens. Altogether, these results sustain the temperature-physiographic hypothesis to explain the species richness decrease along the altitudinal gradient: the harsh climatic conditions of the alpine-nival belts act as a filter for species, but the diminishing diversity of microhabitats is also an important factor. Because cryptogams depend more on humidity than temperature and more on smaller microhabitats than vascular plants, the decrease of species richness is more gradual with elevation for bryophytes and lichens.

Keywords

Altitude Aspect Diversity Elevation range Life forms Switzerland 

Gradient subalpin-nival de la richesse spécifique des plantes vasculaires, bryophytes et lichens dans les Alpes internes en Suisse

Résumé

Dans le cadre du projet européen GLORIA, 12 sommets (de la limite de la forêt à l’étage nival) ont été inventoriés dans trois régions de Suisse: deux dans le Parc national suisse (Grisons) et une en Valais. Les plantes vasculaires ont été étudiées dans les trois régions alors que les bryophytes et lichens n’ont été considérés qu’en Valais. Le protocole du projet GLORIA (Global Observation Research Initiative in Alpine environment) a été utilisé sur tous les sommets, avec des inventaires sur de grandes sections sommitales et sur des groupes de quatre carrés de 1 × 1 m. Nous avons observé une diminution générale de la richesse spécifique dans les trois groupes systématiques pour une altitude croissante dans les sections, mais pour les plantes vasculaires seules dans les carrés. En Valais, il y avait davantage de plantes vasculaires que de lichens et de bryophytes sur les sommets inférieurs mais, comme la diminution de la richesse spécifique était moins marquée pour les cryptogames, ces derniers étaient plus nombreux que les plantes vasculaires sur le sommet le plus élevé. Pour les plantes vasculaires, nous avons observé un changement net des formes de croissances dominantes, avec le remplacement des hémicryptophytes par les chaméphytes lorsque l’altitude augmente. Les bryophytes et les lichens ont montré qu’un faible changement des formes de croissance dominantes dans les sections sommitales mais un changement plus net au niveau des carrés: les coussinets remplacent en proportion la forme gazonnante des bryophytes et les lichens crustacés remplacent les lichens fruticuleux. Dans l’ensemble, ces résultats correspondent bien à l’hypothèse “température-physiographie” pour expliquer la diminution de la richesse spécifique le long du gradient altitudinal: les conditions climatiques rudes des étages alpin et nival agissent comme un filtre pour les espèces, mais la diminution des micro-habitats est également un facteur important. Comme les cryptogames dépendent plus de l’humidité que de la température et qu’ils se contentent de micro-habitats plus restreints que les plantes vasculaires, la richesse spécifique des bryophytes et des lichens diminue moins vite avec l’altitude.

Notes

Acknowledgments

This research has been supported by the Federal Office for the Environment, the MAVA foundation, Forschungskommission SNP, the Société académique de Genève, the Département de la culture et des sports (Canton du Valais) and the Fondation Mariétan. We are really grateful to Lars Hedenäs, Eva Maier and René Schumacker for the revision of some of the collected bryophytes and to Anna Maria Fosaa and two anonymous reviewers for their useful comments on an earlier draft of the manuscript.

Supplementary material

35_2010_79_MOESM1_ESM.doc (180 kb)
Supplementary material 1 (DOC 180 kb)

References

  1. Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora alpina. Belin, ParisGoogle Scholar
  2. Barry RG (1992) Mountain weather and climate. Routledge, LondonGoogle Scholar
  3. Bates D, Maechler M (2009) Lme4: linear mixed-effects models using S4 classes (R package version 0.999375-31)Google Scholar
  4. Bhattarai KR, Vetaas OR (2006) Can Rapoport’s rule explain tree species richness along the Himalayan elevation gradient, Nepal? Divers Distrib 12:373–378CrossRefGoogle Scholar
  5. Braun J (1913) Die Vegetationsverhältnisse der Schneestufe in den Rätisch-Lepontischen Alpen. Ein Bild des Pflanzenlebens an seinen äussersten Grenzen. Neue Denkschriften der Schweizerischen Naturforschenden Gesellschaft 48:1–347Google Scholar
  6. Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angerbjorn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46CrossRefGoogle Scholar
  7. Bureau de coordination du Monitoring de la Biodiversité en Suisse (2009) Etat de la biodiversité en Suisse. Etat de l’environnement nº 0911. OFEV, BerneGoogle Scholar
  8. Clerc P (2004) Les champignons lichénisés de Suisse, catalogue bibliographique complété par des données sur la distribution et l’écologie des espèces. Cryptogamica Helvetica 19:1–320Google Scholar
  9. Coldea G, Pop A (2004) Floristic diversity in relation to geomorphological and climatic factors in the subalpine-alpine belt of the Rodna Mountains (The Romanian Carpathians). Pirineos 158–159:61–72CrossRefGoogle Scholar
  10. Conti E, Soltis DE, Hardig TM, Schneider J (1999) Phylogenetic relationships of the silver saxifrages (Saxifraga, sect. Ligulatae Haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol Phylogenet Evol 13:536–555CrossRefPubMedGoogle Scholar
  11. Cornelissen JHC et al (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–994CrossRefGoogle Scholar
  12. Cortini Pedrotti C (2001) Flora dei muschi d’Italia. Sphagnopsida, Andreaeopsida, Bryopsida (I parte). Antonio Delfino Editore, RomaGoogle Scholar
  13. Cortini Pedrotti C (2006) Flora dei muschi d’Italia. Bryopsida (II parte). Antonio Delfino Editore, RomaGoogle Scholar
  14. Erschbamer B, Mallaun M, Unterluggauer P (2006) Plant diversity along altitudinal gradients in the Southern and Central Alps of South Tyrol and Trentino (Italy). Gredleriana 6:47–68Google Scholar
  15. Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the central European flora? Folia Geobot 38:357–366CrossRefGoogle Scholar
  16. Faraway JJ (2006) Extending the linear model with R. Chapman & Hall/CRC, LondonGoogle Scholar
  17. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227CrossRefPubMedGoogle Scholar
  18. Glime JM (2007) Bryophyte ecology. vol 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. (http://www.bryoecol.mtu.edu)
  19. Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life. A new view of the alpine-nival ecotone. Arc Alp Res 30:207–221CrossRefGoogle Scholar
  20. Grau O, Grytnes JA, Birks HJB (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeo 34:1907–1915CrossRefGoogle Scholar
  21. Grytnes JA (2003) Ecological interpretations of the mid-domain effect. Ecol Lett 6:883–888CrossRefGoogle Scholar
  22. Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol 29:241–246CrossRefGoogle Scholar
  23. Grytnes JA, Heegaard E, Romdal TS (2008) Can the mass effect explain the mid-altitudinal peak in vascular plant species richness? Bas Appl Ecol 9:373–382CrossRefGoogle Scholar
  24. Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401CrossRefGoogle Scholar
  25. Jenny-Lips H (1948) Vegetation der Schweizer Alpen. Büchergilde Gutenberg, ZürichGoogle Scholar
  26. Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514CrossRefGoogle Scholar
  27. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinGoogle Scholar
  28. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574CrossRefPubMedGoogle Scholar
  29. Lange OL (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198:55–70Google Scholar
  30. Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J Veg Sci 20:377–391CrossRefGoogle Scholar
  31. McKone MJ (1993) Statistical analysis of experiments conducted at multiple sites. Oikos 67:184–186CrossRefGoogle Scholar
  32. Nimis PL, Martellos S (2008) ITALIC—the information system on italian lichens. version 4.0. In: University of Trieste, Dept. of Biology, IN4.0/1. (http://dbiodbs.univ.trieste.it/)
  33. Nogues-Bravo D, Araujo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–218CrossRefPubMedGoogle Scholar
  34. Nyholm E (1986–1998) Illustrated flora of nordic mosses. Nordic Bryological Society, Copenhagen, LundGoogle Scholar
  35. Paton JA (1999) The liverwort flora of the British Isles. Harley Books, CochesterGoogle Scholar
  36. Pauli H, Gottfried M, Hohenwallner D, Reiter K, Casale R, Grabherr G (2004) The GLORIA field manual. Multi-summit approach. European Commission. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  37. Rahbek C (1995) The elevational gradient of species richness—a uniform pattern. Ecography 18:200–205CrossRefGoogle Scholar
  38. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239CrossRefGoogle Scholar
  39. Raunkiaer C (1934) Life-forms of plants and statistical plant geography. Clarendon Press, OxfordGoogle Scholar
  40. Rohde K, Heap M, Heap D (1993) Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am Nat 142:1–16CrossRefGoogle Scholar
  41. Schumacker R, Váňa J (2005) Identification keys to the liverworts and hornworts of Europe and Macaronesia (distribution and status), 2nd edn. Sorus, PoznańGoogle Scholar
  42. Smith AJE (2004) The moss flora of Britain and Ireland. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Stanisci A, Pelino G, Blasi C (2005) Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodivers Conserv 14:1301–1318CrossRefGoogle Scholar
  44. Stevens GC (1992) The elevational gradient in altitudinal range, an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911CrossRefPubMedGoogle Scholar
  45. R Development Core Team (2009) R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. (http://www.R-project.org)
  46. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109; 53:529–530Google Scholar
  47. Theurillat J-P, Schlüssel A, Geissler P, Guisan A, Velluti C, Wiget L (2003) Vascular plant and bryophyte diversity along elevation gradients in the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe, vol 167. Springer, Heidelberg, pp 185–193Google Scholar
  48. Theurillat J-P, Iocchi M, Cutini M, De Marco G (2010) Vascular plant richness along an elevation gradient at Monte Velino (Central Apennines, Italy). Biogeografia 28 (in press)Google Scholar
  49. Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol Biogeogr 11:291–301CrossRefGoogle Scholar
  50. Virtanen R, Crawley MJ (2010) Contrasting patterns in bryophyte and vascular plant species richness in relation to elevation, biomass and Soay sheep on St Kilda, Scotland. Plant Ecol Diver 3:77–85CrossRefGoogle Scholar
  51. Whittaker RJ (1999) Scaling, energetics and diversity. Nature 401:865–866CrossRefGoogle Scholar
  52. Wohlgemuth T, Gigon A (2003) Calcicole plant diversity in Switzerland may reflect a variety of habitat templets. Folia Geobot 38:443–452CrossRefGoogle Scholar
  53. Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence. Trends Ecol Evol 12:266–269CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Pascal Vittoz
    • 1
    • 2
  • Martin Camenisch
    • 3
  • Romain Mayor
    • 4
  • Luca Miserere
    • 5
  • Mathias Vust
    • 6
  • Jean-Paul Theurillat
    • 7
    • 8
  1. 1.Department of Ecology and Evolution, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
  2. 2.Faculty of Geosciences and EnvironmentUniversity of LausanneLausanneSwitzerland
  3. 3.Camenisch & ZahnerChurSwitzerland
  4. 4.Institute of Plant SciencesBern UniversityBernSwitzerland
  5. 5.TurinItaly
  6. 6.BussignySwitzerland
  7. 7.Fondation J.-M. AubertChampex-LacSwitzerland
  8. 8.Laboratory of Biogeography, Section of BiologyUniversity of GenevaChambésySwitzerland

Personalised recommendations