Advertisement

Botanica Helvetica

, 119:13 | Cite as

Gradual decline in genetic diversity in Swiss stone pine populations (Pinus cembra) across Switzerland suggests postglacial re-colonization into the Alps from a common eastern glacial refugium

  • Felix Gugerli
  • Martin Rüegg
  • Giovanni G. Vendramin
Article

Abstract

Molecular genetic markers may reveal informative patterns of population processes such as historical migration, which may substantiate inference on postglacial re-colonization inferred, e.g., from fossil records. Palynological records of Swiss stone pine (Pinus cembra) suggest that the species has re-colonized the central Alps from a southeastern Alpine refugium after the last glacial maximum. Such a migration pathway likely resulted in a gradual decrease in genetic diversity with increasing distance to the glacial refugium, owing to founder events at the leading range edge. The present distribution of P. cembra in Switzerland consists of two rather distinct ranges, namely the inner-alpine parts of the Grisons and Valais, respectively, and additional disjunct occurrences in the northern and southern periphery of the Alps as well as between the two main ranges. We screened chloroplast microsatellite loci on 39 Swiss P. cembra populations and show that the genetic structure detected was congruent with a common ancestry from a single glacial refugium, likely located at the (south-)eastern periphery of the Alps. In contrast, our data rejected the alternative hypothesis of a distinct genetic separation of the two main ranges of Swiss stone pine in Switzerland. We further show that low genetic diversity within and high differentiation among peripheral populations in the northern Alps as well as the genetic differentiation between core and peripheral populations reflect genetic drift as a consequence of colonization history and limited gene flow by pollen and seed.

Keywords

Chloroplast microsatellites Core–periphery populations Genetic differentiation Haplotype diversity Pinus cembra 

Zusammenfassung

Molekulargenetische Marker enthalten wertvolle Information über Populationsprozesse wie historische Wanderungen, wodurch Annahmen zur postglazialen Wiederbesiedelung, beispielsweise abgeleitet von Fossilfunden, unterstützt werden können. Palynologische Funde von Arve (Pinus cembra) lassen vermuten, dass diese Art nach dem letzten glazialen Maximum von einem Refugium in den südöstlichen Alpen wieder in die zentralen Alpen eingewandert ist. Ein solcher Rückwanderungsweg dürfte aufgrund von Gründereffekten an der Wanderungsfront eine graduelle Verringerung der genetischen Variation mit zunehmender Distanz zum Glazialrefugium bewirkt haben. Die heutige Verbreitung von P. cembra in der Schweiz weist zwei deutlich getrennte Gebiete auf, nämlich inneralpine Bereiche der Kantone Graubünden und Wallis, mit jeweils isolierten Vorkommen in den nördlichen und südlichen Randalpen. Wir untersuchten Chloroplasten-Mikrosatelliten in 39 Schweizer Populationen von P. cembra und zeigen, dass die gefundene genetische Struktur übereinstimmt mit der Annahme einer gemeinsamen Abstammung aus einem einzigen Glazialrefugium, welches vermutlich am (süd-)östlichen Rand der Alpen lag. Im Gegensatz dazu widerlegen unsere Daten die alternative Hypothese einer deutlichen genetischen Trennung der zwei Hauptvorkommen der Arve in der Schweiz. Im Weiteren zeigen unsere Resultate eine geringe genetische Variation innerhalb und einen hohen Differenzierungsgrad zwischen nördlichen Randalpenvorkommen, sowie eine genetische Differenzierung zwischen zentralen und peripheren Populationen. Dies weist auf genetische Drift hin, welche die Besiedlungsgeschichte und einen beschränkten Genfluss durch Pollen und Samen widerspiegelt.

Notes

Acknowledgments

We thank Sabine Brodbeck for support in the lab, and Rolf Holderegger as well as the anonymous reviewers and Christian Parisod for comments on the manuscript. We are grateful to local forest services and forest owners for permission to sample plant material.

Supplementary material

35_2009_52_MOESM1_ESM.doc (60 kb)
Supplementary Tables (DOC 60 kb)

References

  1. Aizawa M, Yoshimaru H, Katsuki T, Kaji M (2008) Imprint of post-glacial history in a narrowly distributed endemic spruce, Picea alcoquiana, in central Japan observed in nuclear microsatellites and organelle DNA markers. J Biogeogr 35:1295–1307CrossRefGoogle Scholar
  2. Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36:3–15CrossRefGoogle Scholar
  3. Belokon MM, Belokon YS, Politov DV, Altukhov YP (2005) Allozyme polymorphism of Swiss stone pine Pinus cembra L. in mountain populations of the Alps and the Eastern Carpathians. Russ J Genet 41:1268–1280CrossRefGoogle Scholar
  4. Brewer S, Cheddadi R, de Beaulieu J-L, Reille M, Data Contributors (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manage 156:27–48CrossRefGoogle Scholar
  5. Brussard PF (1984) Geographic patterns and environmental gradients: the central–marginal model in Drosophila revisited. Annu Rev Ecol Syst 15:25–64CrossRefGoogle Scholar
  6. Bucci G, Vendramin GG (2000) Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol Ecol 9:923–934PubMedCrossRefGoogle Scholar
  7. Burga CA, Perret R (1998) Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter. Ott, ThunGoogle Scholar
  8. Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent J-M, de Beaulieu J-L, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282Google Scholar
  9. Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397PubMedGoogle Scholar
  10. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581PubMedCrossRefGoogle Scholar
  11. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  12. Excoffier L, Laval G, Schneider S (2007) Arlequin: a software for population genetic data analysis. Computational and Molecular Population Genetics Lab, University of Bern, BernGoogle Scholar
  13. Gapare WJ, Aitken SN, Ritland CE (2005) Genetic diversity of core and peripheral Sitka spruce [Picea sitchensis (Bong.) Carr] populations: implications for conservation of widespread species. Biol Conserv 123:113–123CrossRefGoogle Scholar
  14. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582CrossRefGoogle Scholar
  15. Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792PubMedCrossRefGoogle Scholar
  16. Gotelli NJ, Entsminger GL (2008) EcoSim: null models software for ecology. Acquired Intelligence and Kesey-Bear, JerichoGoogle Scholar
  17. Gugerli F, Senn J, Anzidei M, Madaghiele A, Büchler U, Sperisen C, Vendramin GG (2001a) Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogeographic relationship of Swiss stone pine (Pinus cembra), Siberian stone pine (P. sibirica ), and Siberian dwarf pine (P. pumila). Mol Ecol 10:1489–1497PubMedCrossRefGoogle Scholar
  18. Gugerli F, Sperisen C, Büchler U, Magni F, Geburek T, Jeandroz S, Senn J (2001b) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps. Mol Ecol 10:1255–1263PubMedCrossRefGoogle Scholar
  19. Gugerli F, Sperisen C, Mátyás G, Senn J, Anzidei M, Vendramin GG (2002) Molecular markers help to reveal postglacial re-colonisation routes of forest tree species in the Alpine region. In: Bottarin R, Tappeiner U (eds) Interdisciplinary mountain research. Blackwell, Berlin, pp 156–161Google Scholar
  20. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  21. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  22. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc Lond B 359:183–195CrossRefGoogle Scholar
  23. Hilfiker K, Gugerli F, Schütz J-P, Rotach P, Holderegger R (2004) Low RAPD variation and female-biased sex ratio indicate genetic drift in small populations of the dioecious conifer Taxus baccata in Switzerland. Conserv Genet 5:357–365CrossRefGoogle Scholar
  24. Höhn M, Gugerli F, Abran P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Sebastiani F, Quintela-Sabarís C, Vendramin GG (2009) Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the Alps. J Biogeogr. doi: 10.1111/j.1365-2699.2009.02122.x
  25. Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413CrossRefGoogle Scholar
  26. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci USA 99:14590–14594PubMedCrossRefGoogle Scholar
  27. Liston A, Robinson WA, Piñero D, Alvarez-Buylla ER (1999) Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol Phylogenet Evol 11:95–109PubMedCrossRefGoogle Scholar
  28. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu J-L (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221PubMedCrossRefGoogle Scholar
  29. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190PubMedCrossRefGoogle Scholar
  30. Mattes H (1990) Die Lebensgemeinschaft von Tannenhäher und Arve. Eidgenössische Forschungsanstalt für das forstliche Versuchswesen, BirmensdorfGoogle Scholar
  31. Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261Google Scholar
  32. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  33. Parisod C (2008) Postglacial recolonisation of plants in the western Alps of Switzerland. Bot Helv 118:1–12CrossRefGoogle Scholar
  34. Petit R, Vendramin GG (2007) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of Southern European refugia—Evolutionary perspectives on the origins and conservation of European biodiversity. Springer, Dordrecht, pp 23–97Google Scholar
  35. Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, van Dam B, Deans JD, Dumolin-Lapègue S, Fineschi S, Finkeldey R, Gillies A, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Olalde M, Pemonge M-H, Popescu F, Slade D, Tabbener H, Taurichini D, de Vries SGM, Ziegenhagen B, Kremer A (2002) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manage 156:5–26CrossRefGoogle Scholar
  36. Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  37. Petit RJ, Bialozyt R, Garnier-Gere P, Hampe A (2004) Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. For Ecol Manage 197:117–137CrossRefGoogle Scholar
  38. Politov DV, Belokon MM, Maluchenko OP, Belokon YS, Molozhnikov VN, Mejnartowicz LE, Krutovskii KV (1999) Genetic evidence of natural hybridization between Siberian stone pine, Pinus sibirica Du Tour, and dwarf Siberian pine, P. pumila (Pall.) Regel. For Genet 6:41–48Google Scholar
  39. Rikli M (1909) Die Arve in der Schweiz Neue Denkschr Schweiz Naturforsch Ges 44:1–455Google Scholar
  40. Salzer K, Sebastiani F, Gugerli F, Buonamici A, Vendramin GG (2009) Isolation and characterization of eight polymorphic nuclear microsatellite loci in Pinus cembra L. Mol Ecol Res 9:858–861CrossRefGoogle Scholar
  41. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  42. Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293PubMedCrossRefGoogle Scholar
  43. Szmidt AE (1982) Genetic variation in isolated populations of Stone Pine (Pinus cembra). Silva Fenn 16:196–200Google Scholar
  44. Tollefsrud MM, Kissling R, Gugerli F, Johnsen Ø, Skroppa T, Cheddadi R, van der Knaap P, Latalowa M, Terhürne-Berson R, Litt T, Geburek T, Brochmann C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:3134–3150CrossRefGoogle Scholar
  45. Tomback DF, Holtmeier F-K, Mattes H, Carsey K, Powell ML (1993) Tree clusters and growth form distribution in Pinus cembra, a bird-dispersed pine. Arctic Alpine Res 25:374–381CrossRefGoogle Scholar
  46. Tribsch A (2004) Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J Biogeogr 31:747–760Google Scholar
  47. Tutin TG, Burges NA, Chater AO, Edmonds JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1993) Flora Europaea. Cambridge University Press, CambridgeGoogle Scholar
  48. Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598PubMedCrossRefGoogle Scholar
  49. Zimmermann N, Gugerli F (2005) Linking intra-specific diversity and habitat suitability—a case study using Pinus cembra L. In: Proceedings of the International Botanical Congress, Vienna, July 17–23, p 212Google Scholar
  50. Zoller H (1991) Pinus. In: Conert HJ, Hamann U, Schultze-Motel W, Wagenitz G (eds) Gustav Hegi—Illustrierte Flora von Mitteleuropa. Blackwell, Berlin, pp 77–83Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Felix Gugerli
    • 1
  • Martin Rüegg
    • 1
    • 2
  • Giovanni G. Vendramin
    • 3
  1. 1.WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  2. 2.EschenbachSwitzerland
  3. 3.Istituto di Genetica Vegetale, CNRFlorenceItaly

Personalised recommendations