Advertisement

Digital System Design Using Standard NeuMOS Cells Applied in ADAS

  • 16 Accesses

Abstract

The design and implementation of digital systems with external configuration circuit–SHL (software–hardware–logic)—with standard cells based on floating-gate transistor (NeuMOS) and the implementation of the floating-gate potential diagram (FPD) to obtain Boolean functions are presented. External circuit configuration for designing digital systems of two and four bits reduces the number of transistors, as well as interconnection, and this can increase the speed of data processing; these results are helpful in growing applications like advanced driver assistance system (ADAS), where the number of sensors and processing time are increasing. Simulations results shown prove an effective reduction in transistor count, and a good performance of the system is demonstrated, as well.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    E.A. Cortés-Barrón, M.A. Reyes-Barranca, L.M. Flores-Nava, A. Medina-Santiago, 4-bit arithmetic logic unit (alu) based on neuron mos transistors, in 2012 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (Sept 2012), p. 1–6

  2. 2.

    S. Dominguez-Sánchez, M.A. Reyes-Barranca, S. Abarca-Jiménez, S. Mendoza-Acevedo, A prototype design for an accelerometer using a multiple floating-gate mosfet as a transducer, in 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (Sept 2014), p. 1–6

  3. 3.

    E. Garcia, M.A. Reyes-Barranca, V. Rincón, J. Dominguez, Comprobación de funciones lógico binarias de compuertas xor y xnor usando dispositivos de compuerta flotante, in Conferencia de Ingeniería Eléctrica, México, D.F. (September 2003)

  4. 4.

    R.Z. Kabai, in Applied Artificial Intelligence for Assisted and Autonomous Driving. Presentation, Continental (2018), p. 1–20

  5. 5.

    A. Medina-Santiago, M.A. Reyes-Barranca, I. Algredo-Badillo, A.M. Cruz, K.A.R. Gutiérrez, A.E. Cortés-Barrán, Reconfigurable arithmetic logic unit designed with threshold logic gates. IET Circuits Devices Syst. 13(9), 21–30 (2019)

  6. 6.

    T. Ohmi, T. Shibata, Neuron MOS binary-logic integrated circuits-part I: design fundamentals and soft-hardware logic circuit implementation. IEEE Trans. Electron Devices 40(3), 570–576 (1993)

  7. 7.

    T. Ohmi, T. Shibata, Neuron MOS binary-logic integrated circuits-part II: simplifying techniques of circuit configuration and their practical applications. IEEE Trans. Electron Devices 40(5), 974–979 (1993)

  8. 8.

    E.G. Ramirez, Realización de lógica binaria empleando Dispositivos de Compuerta Flotante, (September 2002). Master’s thesis

  9. 9.

    M.A. Reyes-Barranca, A. Medina-Santiago, Methodology for the design of a 4-bit soft-hardware-logic circuit based on neuron mos transistors. Int. J. Electron. 95(6), 517–530 (2008)

  10. 10.

    E. Rodriguez-Villegas, G. Huertas, M.J. Avedillo, J.M. Quintana, A. Rueda, A practical floating-gate muller-c element using vmos threshold gates. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 48(1), 102–106 (2001)

  11. 11.

    A.M. Santiago, Diseño de celdas binarias para operaciones Aritméticas empleando Dispositivos de Compuerta Flotante Multientrada. Ph.D. thesis, CINVESTAV-IPN, México (November 2008)

  12. 12.

    B. Tongprasit, T. Shibata, Power-balanced reconfigurable floating-gate-mos logic circuit for tamper resistant vlsi, in 2006 IEEE International Symposium on Circuits and Systems, p. 4855–4858 (May 2006)

  13. 13.

    T. Tran, A. Rothenbuhler, E.H.B. Smith, V. Saxena, K.A. Campbell, Reconfigurable threshold logic gates using memristive devices, in 2012 IEEE Subthreshold Microelectronics Conference (SubVT) (Oct 2012), p. 1–3

  14. 14.

    W. Weber, S.J. Prange, R. Thewes, E. Wohlrab, A neuron mos transistor-based multiplier cell, in Proceedings of International Electron Devices Meeting, p. 555–558 (Dec 1995)

  15. 15.

    Yole Developpement Company, in Imaging Technologies for Automotive 2016 Sample, p. 1–31. Presentation, Yole Developpement Company (2016)

  16. 16.

    Y. Zhang, P. Wangand, Design of multi-valued double-edge-triggered jk flip-flop based on neuron mos transistor, in 2009 IEEE 8th International Conference on ASIC (Oct 2009), p. 58–61

Download references

Author information

Correspondence to A. Medina-Santiago.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medina-Santiago, A., Molina, P.E.V., Barranca, M.A.R. et al. Digital System Design Using Standard NeuMOS Cells Applied in ADAS. Circuits Syst Signal Process (2020). https://doi.org/10.1007/s00034-019-01325-5

Download citation

Keywords

  • Floating-gate transistor
  • Software–hardware–logic (SHL)
  • NeuMOS
  • Floating-gate potential diagram (FPD)
  • Standard cells
  • Digital electronic systems
  • ADAS