Advertisement

NVLCFF: An Energy-Efficient Magnetic Nonvolatile Level Converter Flip-Flop for Ultra-Low-Power Design

  • Mehrdad Morsali
  • Mohammad Hossein MoaiyeriEmail author
Article
  • 15 Downloads

Abstract

Power dissipation has become a major concern in nanoscale integrated circuits. The power gating and dual-supply design methods are among the most effective approaches for reducing the static and dynamic power consumptions. However, these methods require efficient data retention and voltage level conversion. In this paper, a nonvolatile level converter flip-flop (NVLCFF) is proposed to be used in ultra-low-power integrated circuits. Our proposed NVLCFF employs the magnetic tunnel junction (MTJ) for data retention. Spin transfer torque along with the spin Hall effect is used for reconfiguring the MTJs. The peripheral circuitry is designed using 7-nm FinFET as one of the leading industrial technologies. Furthermore, to facilitate the use of the dual-supply approach, voltage level conversion is performed in the structure of the proposed NVLCFF. According to the HSPICE simulations, the power consumption, backup energy and restore energy of the proposed circuit are on average 59%, 48% and 92% lower than the other NVLCFFs based on the previous nonvolatile flip-flops with different MTJ structures. Furthermore, the comprehensive Monte Carlo simulations indicate the robustness of the proposed design in the presence of major MTJ and FinFET process variations as compared to the previous designs.

Keywords

Magnetic tunnel junction (MTJ) Nonvolatile flip-flop Level conversion Low-power design Dual-supply circuits Power gating 

Notes

References

  1. 1.
    M. Ahmadinejad, M.H. Moaiyeri, F. Sabetzadeh, Energy and area efficient imprecise compressors for approximate multiplication at nanoscale. AEU Int. J. Electron. Commun. 110, 1–11 (2019).  https://doi.org/10.1016/j.aeue.2019.152859 CrossRefGoogle Scholar
  2. 2.
    S. Angizi, Z. He, A. Awad, D. Fan, MRIMA: an MRAM-based in-memory accelerator. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2019).  https://doi.org/10.1109/TCAD.2019.2907886 CrossRefGoogle Scholar
  3. 3.
    S. Angizi, Z. He, N. Bagherzadeh, D. Fan, Design and evaluation of a spintronic in-memory processing platform for nonvolatile data encryption. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(9), 1788–1801 (2017).  https://doi.org/10.1109/TCAD.2017.2774291 CrossRefGoogle Scholar
  4. 4.
    L.T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy, G. Yeric, ASAP7: a 7-nm finFET predictive process design kit. Microelectron. J. 53, 105–115 (2016).  https://doi.org/10.1016/j.mejo.2016.04.006 CrossRefGoogle Scholar
  5. 5.
    E. Deng, Y. Wang, Z. Wang, J.-O. Klein, B. Dieny, G. Prenat, W. Zhao, Robust magnetic full-adder with voltage sensing 2T/2MTJ cell, in Proceedings of 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH´15). Boston, MA, pp 27–32 (2015).  https://doi.org/10.1109/NANOARCH.2015.7180582
  6. 6.
    R. Dorrance, F. Ren, Y. Toriyama, A.A. Hafez, C.-K.K. Yang, D. Markovic, Scalability and design-space analysis of a 1 T-1 MTJ memory cell for STT-RAMs. IEEE Trans. Electron Devices 59(4), 878–887 (2012).  https://doi.org/10.1109/TED.2011.2182053 CrossRefGoogle Scholar
  7. 7.
    X. Fong, R. Venkatesan, A. Raghunathan, K. Roy, Nonvolatile complementary polarizer spin-transfer torque on-chip caches: a device/circuit/systems perspective. IEEE Trans. Magn. (2014).  https://doi.org/10.1109/TMAG.2014.2326858 CrossRefGoogle Scholar
  8. 8.
    S.K. Gupta, K. Roy, Low power robust FinFET-based SRAM design in scaled technologies, in Circuit Design for Reliability, ed. by R. Reis, Y. Cao, G. Wirth (Springer, New York, 2015), pp. 223–253.  https://doi.org/10.1007/978-1-4614-4078-9_11 CrossRefGoogle Scholar
  9. 9.
    F. Ishihara, F. Sheikh, B. Nikolic, Level conversion for dual-supply systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(2), 185–195 (2004).  https://doi.org/10.1109/TVLSI.2003.821548 CrossRefGoogle Scholar
  10. 10.
    A. Jaiswal, R. Andrawis, K. Roy, Area-efficient nonvolatile flip-flop based on spin Hall effect. IEEE Magn. Lett. 9, 1–4 (2018).  https://doi.org/10.1109/LMAG.2018.2829676 CrossRefGoogle Scholar
  11. 11.
    M. Kazemi, E. Ipek, E.G. Friedman, Energy efficient nonvolatile flip flop with subnanosecond data backup time for fine grain power gating. IEEE Trans. Circuits Syst. II Express Briefs 62(12), 1154–1158 (2015).  https://doi.org/10.1109/TCSII.2015.2468931 CrossRefGoogle Scholar
  12. 12.
    K.W. Kwon, S.H. Choday, Y. Kim, X. Fong, S.P. Park, K. Roy, SHE-NVFF: spin Hall effect based nonvolatile flip-flop for power gating architecture. IEEE Electron. Device Lett. 35(4), 488–490 (2014).  https://doi.org/10.1109/LED.2014.2304683 CrossRefGoogle Scholar
  13. 13.
    M. Lanuzza, F. Crupi, S. Rao, R. De Rose, S. Strangio, G. Iannaccone, An ultra-low voltage energy efficient level shifter. IEEE Trans. Circuits Syst. II Express Briefs 64(1), 61–65 (2017).  https://doi.org/10.1109/TCSII.2016.2538724 CrossRefGoogle Scholar
  14. 14.
    E. Maghsoudloo, M. Rezaei, M. Sawan, B. Gosselin, A high-speed and ultra low-power subthreshold signal level shifter. IEEE Trans. Circuits Syst. I Regul. Pap. 64(5), 1164–1172 (2017).  https://doi.org/10.1109/TCSI.2016.2633430 CrossRefGoogle Scholar
  15. 15.
    M.H. Moaiyeri, R. Chavoshisani, A. Jalali, K. Navi, O. Hashemipour, High-performance mixed-mode universal min-max circuits for nanotechnology. Circuits Syst. Signal Process. 31(2), 465–488 (2012).  https://doi.org/10.1007/s00034-011-9344-3 MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Moghaddam, M.H. Moaiyeri, M. Eshghi, A. Jalali, A low-power multiplier using an efficient single-supply voltage level converter. J. Circuits Syst. Comput. 24(8), 1550124 (2015).  https://doi.org/10.1142/S0218126615501248 CrossRefGoogle Scholar
  17. 17.
    M. Moghaddam, S. Timarchi, M.H. Moaiyeri, M. Eshghi, An ultra-low-power 9T SRAM cell based on threshold voltage techniques. Circuits Syst Signal Process 35(5), 1437–1455 (2016).  https://doi.org/10.1007/s00034-015-0119-0 CrossRefGoogle Scholar
  18. 18.
    R. Rajaei, A. Gholipour, Low power, reliable, and nonvolatile MSRAM cell for facilitating power gating and nonvolatile dynamically reconfiguration. IEEE Trans. Nanotechnol. 17(2), 261–267 (2018).  https://doi.org/10.1109/TNANO.2018.2792782 CrossRefGoogle Scholar
  19. 19.
    F. Razi, M.H. Moaiyeri, R. Rajaei, S. Mohammadi, A variation-aware ternary spin-hall assisted STT-RAM based on Hybrid MTJ/GAA-CNTFET logic. IEEE Trans. Nanotechnol. 18(1), 598–605 (2019).  https://doi.org/10.1109/TNANO.2019.2918198 CrossRefGoogle Scholar
  20. 20.
    M. Rostami, K. Mohanram, Dual-Vth independent-gate FinFETs for low power logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(3), 337–349 (2011).  https://doi.org/10.1109/TCAD.2010.2097310 CrossRefGoogle Scholar
  21. 21.
    F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 66(11), 4200–4208 (2019).  https://doi.org/10.1109/TCSI.2019.2918241 CrossRefGoogle Scholar
  22. 22.
    S. Sayyah Ensan, M.H. Moaiyeri, B. Ebrahimi, S. Hessabi, A. Afzali-Kusha, A low-leakage and high-writable SRAM cell with back-gate biasing in FinFET technology. J. Comput. Electron. 18(2), 519–526 (2019).  https://doi.org/10.1007/s10825-019-01327-1 CrossRefGoogle Scholar
  23. 23.
    S. Sayyah Ensan, M.H. Moaiyeri, M. Moghaddam, S. Hessabi, A low-power single-ended SRAM in FinFET technology. AEU Int. J. Electron. Commun. 99, 361–368 (2019).  https://doi.org/10.1016/j.aeue.2018.12.015 CrossRefGoogle Scholar
  24. 24.
    Y. Seo, X. Fong, K. Roy, Fast and disturb-free nonvolatile flip-flop using complementary polarizer MTJ. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(4), 1573–1577 (2017).  https://doi.org/10.1109/TVLSI.2016.2631981 CrossRefGoogle Scholar
  25. 25.
    A. Shafaei, Y. Wang, M. Pedram, Low write-energy STT-MRAMs using FinFET-based access transistors, in 2014 IEEE 32nd International Conference on Computer Design (ICCD). 19–22 Oct. 2014, pp. 374–379.  https://doi.org/10.1109/ICCD.2014.6974708
  26. 26.
    A. Shapiro, E.G. Friedman, Power efficient level shifter for 16 nm FinFET near threshold circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(2), 774–778 (2016).  https://doi.org/10.1109/TVLSI.2015.2409051 CrossRefGoogle Scholar
  27. 27.
    S. Shirinabadi Farahani, M.R. Reshadinezhad, A new twelve-transistor approximate 4:2 compressor in CNTFET technology. Int. J. Electron. 106(5), 691–706 (2019).  https://doi.org/10.1080/00207217.2018.1545930 CrossRefGoogle Scholar
  28. 28.
    S. Sinha S, B. Cline, G. Yeric, V. Chandra, Y. Cao, Design benchmarking to 7 nm with FinFET predictive technology models, in 2012 ACM/IEEE International Symposium on Low Power Electronics and Design. 30 Jul–01 Aug. 2012, pp. 15–20.  https://doi.org/10.1145/2333660.2333666
  29. 29.
    H. Taheri Tari, A. Dabaghi Zarandi, M. Reza Reshadinezhad, Design of a high performance CNTFET-based full adder cell applicable in: carry ripple, carry select and carry skip adders. Microelectron. Eng. 215, 110980 (2019).  https://doi.org/10.1016/j.mee.2019.110980 CrossRefGoogle Scholar
  30. 30.
    A. Udhayakumar, S. Padma, Low power magnetic non-volatile flip-flops with self-time logical writing for high-end processors. Circuits Syst. Signal Process. 38(11), 4921–4932 (2019).  https://doi.org/10.1007/s00034-019-01108-y CrossRefGoogle Scholar
  31. 31.
    Z. Wang, W. Zhao, E. Deng, J.O. Klein, C. Chappert, Perpendicular-anisotropy magnetic tunnel junction switched by Spin-Hall-assisted spin-transfer torque. J. Phys. D Appl. Phys. (2015).  https://doi.org/10.1088/0022-3727/48/6/065001 CrossRefGoogle Scholar
  32. 32.
    Z. Wang, W. Zhao, E. Deng, Y. Zhang, J.O. Klien, Magnetic non-volatile flip-flop with spin-Hall assistance. Phys Status Solidi (RRL) Rapid Res Let. 9(6), 375–378 (2015).  https://doi.org/10.1002/pssr.201510097 CrossRefGoogle Scholar
  33. 33.
    C. Xu, Y. Zheng, D. Niu, X. Zhu, S.H. Kang, Y. Xie, Impact of write pulse and process variation on 22 nm FinFET-based STT-RAM design: a device-architecture co-optimization approach. IEEE Trans. Multi-Scale Comput. Syst. 1(4), 195–206 (2015).  https://doi.org/10.1109/TMSCS.2015.2509960 CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, W. Zhao, Y. Lakys, J.O. Klein, J.V. Kim, D. Ravelosona, C. Chappert, Compact modeling of perpendicular-anisotropy CoFeB/MgO magnetic tunnel junctions. IEEE Trans. Electron Devices 59(3), 819–826 (2012).  https://doi.org/10.1109/TED.2011.2178416 CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, X. Wang, Y. Chen, STT-RAM cell design optimization for persistent and non persistent error rate reduction: a statistical design view, in Proceedings of the International Conference on Computer-Aided Design. San Jose, CA, pp. 471–477 (2011).  https://doi.org/10.1109/ICCAD.2011.6105370

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Beheshti University, G.C.TehranIran

Personalised recommendations