Normalized Nonlinear Semiempirical MOST Model Used in Monolithic RF Class A-to-C PAs

  • Rafaella FiorelliEmail author
  • Nicolás Barabino
  • Fernando Silveira
  • Eduardo Peralías


This paper presents a simple but accurate normalized nonlinear large-signal semiempirical MOS transistor model to be used in monolithic RF Class A-to-C PAs. MOS transistor characteristics, saved in lookup tables, are extracted for different PVT corners, allowing the study of the PA performance spread. Model accuracy is ratified by the excellent matching obtained when comparing data algebraically calculated with electrical simulations of hundreds of PAs, and with the measurement data of a fabricated 2.4 GHz PA.


Nonlinear model Semiempirical Class A-to-C RF PA Monolithic MOS transistor RF Low power Power amplifier 



This work was supported in part by FEDER funds through the Andalusian Government Project P09-TIC-5386, Spanish Government MAE-AECID grants; Uruguayan ANII Grant BE-POS-2010-2442 and MOSIS Research Program.


  1. 1.
    N. Barabino, R. Fiorelli, F. Silveira, Efficiency based design flow for fully-integrated class C RF power amplifiers in nanometric CMOS, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010), pp. 2223–2226.
  2. 2.
    C. Bernier, F. Hameau, G. Billiot, E. de Foucauld, S. Robinet, D. Lattard, J. Durupt, F. Dehmas, L. Ouvry, P. Vincent, An ultra low power SoC for 2.4 GHz IEEE802.15.4 wireless communications, in 34th European Solid-State Circuits Conference (ESSCIRC) (2008), pp. 426–429.
  3. 3.
    C. Bowick, RF Circuit Design (Elsevier, Burlington, 2007)Google Scholar
  4. 4.
    P. Choi, H.C. Park, S. Kim, S. Park, I. Nam, T.W. Kim, S. Park, S. Shin, M.S. Kim, K. Kang, Y. Ku, H. Choi, S.M. Park, K. Lee, An experimental coin-sized radio for extremely low-power WPAN (IEEE802.15.4) application at 2.4 GHz. IEEE J. Solid-State Circuits 38(12), 2258–2268 (2003). CrossRefGoogle Scholar
  5. 5.
    S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd edn. (Artech House, Norwood, 2006). ISBN: 9781596930186 Google Scholar
  6. 6.
    P. Dal Fabbro, M. Kayal, Design of the dynamic supply CMOS RF power amplifier, in Linear CMOS RF Power Amplifiers for Wireless Applications, ed. by P. Dal Fabbro, M. Kayal (Springer, Berlin, 2010), pp. 17–38. CrossRefGoogle Scholar
  7. 7.
    R. Fiorelli, E. Peralias, F. Silveira, LC-VCO design optimization methodology based on the gm/ID ratio for nanometer CMOS technologies. IEEE Trans. Microw. Theory Tech. 59(7), 1822–1831 (2011). CrossRefGoogle Scholar
  8. 8.
    R. Fiorelli, E. Peralías, Semi-empirical RF MOST model for CMOS 65 nm technologies: theory, extraction method and validation. Integr. VLSI J. 52(1), 228–236 (2016). CrossRefGoogle Scholar
  9. 9.
    R. Fiorelli, F. Silveira, E. Peralías, MOST moderate-weak-inversion region as the optimum design zone for CMOS 2.4-GHz CS-LNAs. IEEE Trans. Microw. Theory Tech. 62(3), 556–566 (2014). CrossRefGoogle Scholar
  10. 10.
    R. Gupta, B.M. Ballweber, D.J. Allstot, Design and optimization of CMOS RF power amplifiers. IEEE J. Solid-State Circuits 36(2), 166–175 (2001). CrossRefGoogle Scholar
  11. 11.
    P.G.A. Jespers, B. Murmann, Systematic Design of Analog CMOS Circuits (Cambridge University Press, Cambridge, 2017). CrossRefzbMATHGoogle Scholar
  12. 12.
    Y.J. Kim, I.-C. Hwang, D. Baek, A switchless Zigbee frontend transceiver with matching component sharing of LNA and PA. IEEE Microwave Wirel. Compon. Lett. 20(9), 516–518 (2010). CrossRefGoogle Scholar
  13. 13.
    W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe, D. Eggert, A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee(TM) applications. IEEE J. Solid-State Circuits 41(12), 2767–2775 (2006). CrossRefGoogle Scholar
  14. 14.
    W. Liu, J. Chen, X. Liu, H. Wang, N. Wu, A 2.4 GHz low power CMOS transceiver for LR-WPAN applications. Sci. China Inf. Sci. 57(8), 1–13 (2014). CrossRefGoogle Scholar
  15. 15.
    T.K. Nguyen, V. Krizhanovskii, J. Lee, S.K. Han, S.G. Lee, N.S. Kim, C.S. Pyo, A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-μm CMOS technology. IEEE Trans. Microw. Theory Tech. 54(12), 4062–4071 (2006). CrossRefGoogle Scholar
  16. 16.
    A. Raghavan, N. Srirattana, J. Laskar, Modeling and Design Techniques for RF Power Amplifiers (Wiley-IEEE Press, Hoboken, 2008). CrossRefGoogle Scholar
  17. 17.
    J. Ramos, K. Francken, G.G.E. Gielen, M.S.J. Steyaert, An efficient, fully parasitic-aware power amplifier design optimization tool. IEEE Trans. Circuits Syst. I Regul. Pap. 52(8), 1526–1534 (2005). CrossRefGoogle Scholar
  18. 18.
    N. Saputra, J. Long, A fully-integrated, short-range, low data rate FM-UWB transmitter in 90 nm CMOS. IEEE J. Solid-State Circuits 46(7), 1627–1635 (2011). CrossRefGoogle Scholar
  19. 19.
    A. Shameli, P. Heydari, Ultra-low power RFIC design using moderately inverted MOSFETs: an analytical/experimental study, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (2006), pp. 470–473.
  20. 20.
    F. Silveira, D. Flandre, P.G.A. Jespers, A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA. IEEE J. Solid-State Circuits 31(9), 1314–1319 (1996). CrossRefGoogle Scholar
  21. 21.
    H. Solar-Ruiz, Roc Berenguer Pérez, Linear CMOS RF Power Amplifiers: A Complete Design Workflow (Springer, Berlin, 2014). CrossRefzbMATHGoogle Scholar
  22. 22.
    A. Zolfaghari, B. Razavi, A low-power 2.4-GHz transmitter/receiverCMOS IC. IEEE J. Solid-State Circuits 38(2), 176–183 (2003). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Microelectrónica de Sevilla (IMSE-CNM)Consejo Superior de Investigaciones Científicas and Universidad de SevillaSevilleSpain
  2. 2.Instituto de Ingeniería EléctricaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations